摘要
In this paper, the S-frames, the front side rail structures of automobile, were investigated for crashworthihess. Various cross-sections including regular polygon, nonconvex polygon and multi-cell with inner stiffener sections were investigated in terms of energy absorption of S-frames. It was determined through extensive numerical simulation that a multi-celI S-frame with double vertical internal stiffeners can absorb more energy than the other configurations. Shape optimization was also carried out to improve energy absorption of the S-frame with a rectangular section. The center composite design of experiment and the sequential response surface method (SRSM) were adopted to construct the approximate design sub-problem, which was then solved by the feasible direction method. An innovative double S- frame was obtained from the optimal result. The optimum configuration of the S-frame was crushed numerically and more plastic hinges as well as shear zones were observed during the crush process. The energy absorption efficiency of the structure with the optimal configuration was improved compared to the initial configuration.
In this paper, the S-frames, the front side rail structures of automobile, were investigated for crashworthihess. Various cross-sections including regular polygon, nonconvex polygon and multi-cell with inner stiffener sections were investigated in terms of energy absorption of S-frames. It was determined through extensive numerical simulation that a multi-celI S-frame with double vertical internal stiffeners can absorb more energy than the other configurations. Shape optimization was also carried out to improve energy absorption of the S-frame with a rectangular section. The center composite design of experiment and the sequential response surface method (SRSM) were adopted to construct the approximate design sub-problem, which was then solved by the feasible direction method. An innovative double S- frame was obtained from the optimal result. The optimum configuration of the S-frame was crushed numerically and more plastic hinges as well as shear zones were observed during the crush process. The energy absorption efficiency of the structure with the optimal configuration was improved compared to the initial configuration.
基金
supported by the National Basic Research Programof China(2011CB610304)
the National Natural Science Foundation of China(11172052)
the National S&T Major Project(2012ZX04010-0114)