期刊文献+

基于数据特征抽取技术的多模态异常监测 被引量:1

Feature extraction technique based on multi-modal data anomaly detection
下载PDF
导出
摘要 由于设备磨损,过程负荷等因素的变化,生产过程会出现多个模态,并且稳定模态之间会经历一个缓慢变化的过渡模态。然而现有多模态处理方法没有对过渡模态的动态特性进行有效的过程监测。鉴于此,本文采用微分几何特征抽取的方式提取过渡模态的动态特征,主要是通位置、斜率、曲率等几何特性刻画过渡模态的动态曲线特征,建立起过渡模态基于滚动球的异常检测模型,进而进行过渡模态的异常监测。仿真结果验证了本文所采用算法的有效性。 Due to the changes of the abrasion of equipment, the load of process and so on, production process will appear multiple modes, and the production process will experience a slowly changing transition mode from a stable operation mode to another one. However, there were not effective multi-mode processing methods for the dynamic characteristics of the transition mode. Given this, this article adopts the method of differential geometric feature extraction to extract the dynamic characteristics of transition mode, mainly use the geometric elements such as location, slope, curvature to describe the dynamic curve characteristics of the transition mode, establish the anomaly detection model based on the rolling balls for fault detection of transition mode. Simulation result shows the effectiveness of the algorithm.
出处 《自动化与仪器仪表》 2014年第4期135-136,139,共3页 Automation & Instrumentation
基金 到国家自然科学基金的资助 基金编号:61174112 61203094
关键词 过渡模态 微分几何特征抽取 异常监测 Ttransitional mode Differential geometry feature extraction Fault detection
  • 相关文献

参考文献4

二级参考文献53

  • 1张建明,徐磊,许仙珍,谢磊.基于混合PCA模型的多工况过程监控方法[J].控制工程,2010,17(4):553-556. 被引量:4
  • 2牛征,刘吉臻,牛玉广.动态多主元模型故障检测方法在变工况过程中的应用[J].动力工程,2005,25(4):554-558. 被引量:17
  • 3陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 4邹涛,王昕,李少远.基于混合逻辑的非线性系统多模型预测控制[J].自动化学报,2007,33(2):188-192. 被引量:18
  • 5Chiang L H,Ressell E L,Braatz R D.Fault Detection and Diagnosis in Industrial System[M].London:Springer-Verlag,2001.
  • 6Zullo L.Validation and verification of continuous plants operating modes using multivariate statistical methods[J].Computers & Chemical Engineering,1996,20:683-688.
  • 7Hwang D H,Han C.Real-time monitoring for a process with multiple operating modes[J].Control Engineering Practice,1999,7:891-902.
  • 8Zhao S J,et al.A multiple PCA model based technique for the monitoring of processes with multiple operating modes//A Barbosa-povoa,European Symposium on Computer Aided Chemical Engineering-14[C].Lisbon,Portugal:Elsevier,2004:865-870.
  • 9Choi S W,Park J H,Lee I B.Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis[J].Computers & Chemical Engineering,2004,28(8):1377-1387.
  • 10Yu J,Qin S J.Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J].AIChE J.,2008,54(7)..1811-1829.

共引文献60

同被引文献8

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部