期刊文献+

基于PSO-SVM的轨道交通车站安全态势预测研究

下载PDF
导出
摘要 提出一种基于PSO-SVM算法的安全态势预测模型,用于城市轨道交通车站安全态势预测研究。首先介绍支持向量机(SVM)和粒子群优化算法(PSO)的基本概念,以高斯径向基函数为核函数建立支持向量机安全态势预测模型,然后应用粒子群算法优化模型参数,得到优化的预测模型,再以某车站为例进行仿真实验,结果表明利用PSO-SVM算法预测车站安全态势值具有可行性。该预测方法对车站安全运营和乘客安全出行具有一定指导意义。
出处 《中国铁路》 2014年第8期100-104,共5页 China Railway
基金 国家科技支撑计划项目(2011BAG01B02)
  • 相关文献

参考文献2

二级参考文献11

  • 1刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:49
  • 2乔立岩,彭喜元,彭宇.基于微粒群算法和支持向量机的特征子集选择方法[J].电子学报,2006,34(3):496-498. 被引量:25
  • 3郑春红,焦李成,丁爱玲.基于启发式遗传算法的SVM模型自动选择[J].控制理论与应用,2006,23(2):187-192. 被引量:18
  • 4Dong Y L, Xia Z H, Xia Z Q. A two-level approach to choose the cost parameter in support vector machines [J]. Expert Systems with Applications, 2008, 34(2): 1366-1370.
  • 5Ayat N E, Cheriet M, Suen C Y. Automatic model selection for the optimization of SVM kernels [J]. Pattern Recognition, 2005, 38(10) : 1733-1745.
  • 6Avci E. Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: HGASVM [J]. Expert Systems with Applications, 2009, 36(2): 1391-1402.
  • 7Keersthi S S. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms[J]. IEEE Trans on Neural Networks, 2002, 13(5) : 1225-1229.
  • 8Kennedy J, Eberhart R C. Particle swarm optimization [C]. Proc IEEE Conf on Neural Networks. Perth:Piscataway, 1995, 4: 1942-1948.
  • 9Clerc M, Kennedy J. The particle swarm explosion, stability, and convergence in a multidimensional complex space [ J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 10卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,39(7):93-97. 被引量:41

共引文献2289

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部