期刊文献+

下击暴流作用下输电铁塔荷载取值及承载性能分析 被引量:16

Bearing Capacity Analysis and Load Values of Transmission Towers Under Thunderstorm Downburst
下载PDF
导出
摘要 下击暴流会给输电线路造成巨大危害,已引发生多起倒塔事故。基于ASCE关于高强度风区域输电线路设计的相关规定,综合考虑下击暴流尺度特征和输电线路经济性设计原则,提出了下击暴流作用下输电线路的设计荷载取值建议。采用Vicroy风速剖面模型,计算得到了内陆和沿海地区典型输电铁塔在下击暴流作用下的风荷载。建立了输电铁塔空间有限元分析模型,通过结构受力分析,确定了输电铁塔在下击暴流作用下的受力特征和破坏模式。结果表明:下击暴流作用下,输电铁塔杆件应力主要由45°大风控制。对于设计风速较低的内陆地区,尽管铁塔结构高度不在下击暴流最高风速区域,下击暴流风荷载明显高于常规风,塔腿横隔面以上主材会首先发生破坏;对于设计风速较高的沿海地区,下击暴流风荷载低于常规风,下击暴流在铁塔设计中不起控制作用。 Downbursts can cause great harm to the transmission lines and even many destroyed accidents of the towers. Based on the design regulations on the transmission lines in high intensity wind areas by ASCE, by considering the scale features of downbursts and the economic design principle of transmission lines, the design load values under downbursts for transmission lines were proposed. The wind velocity profile model by Vicroy was applied, and the wind loads of two typical transmission towers in inland areas and littoral areas were calculated separately. Spatial finite element models of the transmission towers were established and the structural analysis was completed. The bearing characteristics and the destroyed modes of the transmission towers under downburst were determined. It shows that stresses of the tower members are mainly controlled by 45~ wind load. For the inland areas with low deign wind velocity, though the structural height is not in the highest wind velocity zone of downburst, the wind load under downburst is much higher than under regular wind. The main members above the transverse separator of the legs will be firstly destroyed. For the littoral areas with high deign wind velocity, the wind load under downburst is lower than under regular wind. Transmission towers are not controlled by the wind loads from downbursts in design process.
出处 《中国电机工程学报》 EI CSCD 北大核心 2014年第24期4179-4186,共8页 Proceedings of the CSEE
关键词 下击暴流 风速剖面 输电铁塔 荷载 破坏模式 downburst wind speed profile transmissiontower load destroyed mode
  • 相关文献

参考文献25

  • 1柳国环,李宏男.高压输电塔–线体系风致动力响应分析与优化控制[J].中国电机工程学报,2008,28(19):131-137. 被引量:26
  • 2肖正直,李正良,汪之松,晏致涛,韩枫.1000kV汉江大跨越塔线体系风洞实验与风振响应分析[J].中国电机工程学报,2009,29(34):84-89. 被引量:21
  • 3American Society of Civil Engineers. ASCE manuals and reports on engineering practice No. 74[S]. Reston: American Society of Civil Engineers, 2009.
  • 4Savory E, Parke G A R, Zeinoddini M, et al. Modelling of tornado and microburst-induced wind loading and failure of a lattice transmission tower[J]. Engineering Structures, 2001(23): 365-375.
  • 5谢强,张勇,李杰.华东电网500 kV任上5237线飑线风致倒塔事故调查分析[J].电网技术,2006,30(10):59-63. 被引量:115
  • 6Holmes J D, Baker C J, English E C, et al. Wind structure and codification[J]. Wind and Structures, 2005, 8(4): 235-250.
  • 7Holmes J D. Recent developments in the specification of wind loads on transmission lines[J]. Journal of Wind & Engineering, 2008, 5(1): 8-18.
  • 8国家能源局.DL/T5154-2012,架空输电线路杆塔结构设计技术规定[S].北京:中国计划出版社,2012.
  • 9International Electrotechnical Commision. IEC 60826, Design criteria of overhead transmission lines [S]. Geneva: International Electrotechnical Commision, 2003.
  • 10British Standards Institution. BS-8100: 1986, Lattice tower and masts-Partl: Code of practice for loading [S]. London: British Standardslnstitution, 2005.

二级参考文献153

共引文献203

同被引文献177

引证文献16

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部