摘要
针对海道测量中侧扫声纳声强数据中的噪声问题,分析侧扫声纳海底杂波的统计模型,提出基于ping数据的经验模态分解抑制噪声方法。结果表明,从ping声强数据中减掉周期小于4的模态后,声强数据可较好地服从Gamma分布,并保持声图中的细节信息。
Aiming at the noises of side scan sonar data in hydrography, it analyzes the distribution model of the echo from seabed, and prompts a denoising method using EMD, with a ping of data as the cell. The experimental results indicate that when modes with period less than 4 are subtracted from the ping of data, the spared intensity generalizes Gamma distribution preferably. Compared with other denoising methods, the performance of the method is satisfactory in both denoising and detail preservation.
出处
《测绘工程》
CSCD
2014年第4期24-27,32,共5页
Engineering of Surveying and Mapping
关键词
侧扫声纳
经验模态分解
噪声抑制
分布模型
side scan sonar
empirical mode decomposition
noise suppression
distribution model