期刊文献+

一种基于句法分析的情感标签抽取方法 被引量:18

A Sentiment Label Extraction Method Based on Dependency Parsing
原文传递
导出
摘要 指出情感标签由评价对象和情感词组成,包含评论的关键要素,能清楚地表达评价者的观点意见。提出一种针对产品网络评论的情感标签抽取模型,利用依存句法分析设计情感标签抽取算法,通过情感极性计算对抽取出的情感标签进行过滤。通过放宽的抽取规则与情感极性过滤相结合,以提高情感标签的召回率,实现潜在评价对象的抽取。最后用网络抓取的产品评论语料作为测试数据集对模型进行测试,获得较高的抽取准确率和召回率,并对模型中存在的问题进行总结,作为模型改善的指导。 As a collection of evaluation object and sentiment words, sentiment label contains key elements of on user reviews and can effectively reflect their core contents. This paper proposes a model of extracting sentiment label from products reviews in Web. Based on dependency parsing technology, it designs the algorithm of sentiment label extraction, and filters extracted sentiment labels by setting the threshold for emotional polarity. Combined with the relaxed rules of extraction and emotional polarity filter, it gets higher recall and extracts the potential target of reviews. Finally, it captures on- line reviews of product as the test data set to test the model and receive a higher precision and recall. To improve the model, the problems in the model are also summarized.
出处 《图书情报工作》 CSSCI 北大核心 2014年第14期12-20,共9页 Library and Information Service
基金 国家自然科学基金项目“科研团队动态演化规律研究”(项目编号:71273196) 北京市财政项目“大数据环境下情报服务规范化体系建设”(项目编号:PXM2013_178214_000010) 武汉大学自主科研项目(人文社会科学)“网络视角下的应急情报体系建设主题研究”(项目编号:274014,得到“中央高校基本科研业务费专项资金”资助)的研究成果之一
关键词 情感标签 观点挖掘 依存句法分析 产品评论 sentiment label opinion mining dependency parsing product review
  • 相关文献

参考文献20

  • 1中国互联网信息中心(CNNIC).第33次《中国互联网络发展状况统计报告》[EB/OL].2014.http://www, cnnic, cn/hlwfzyj/hlwxzbg/hlwtjbg/ 201401/t20140116_43820. htm.
  • 2Popescu A M, Etzioni O. Extracting product features and opinions from reviews[ M ]//Kao A, Poteet S R. Natural Language Process- ing and Text Mining. London: Springer, 2007:9 -28.
  • 3Hatzivassiloglou V, McKeown K R. Predicting the semantic orien- tation of adjectives [ C ]//Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and Eighth Confer- ence of the European Chapter of the Association for Computational Linguistics. Stroudsbur : ACL, 1997: 174- 181.
  • 4Li Zhuang, Feng Jing, Zhu Xiaoyan. Movie review mining and summarization [ C ]//Proceedings of the 15th ACM International Conference on Information and Knowledge Management. New York : ACM, 2006 : 43 - 50.
  • 5Pak A, Paroubek P. Twitter as a corpus for sentiment analysis and opinion mining[ C ]//Proceedings of the Seventh Conference on In- ternational Language Resources and Evaluation ( LREC' 10). Valletta: ELRA, 2010:1320 - 1326.
  • 6Hu Minqing, Liu Bing. Mining and summarizing customer reviews [ C]//Proceedings of the Tenth ACM SIGKDD International Con- ference on Knowledge Discovery and Data Mining. New York : ACM, 2004:168-177.
  • 7朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 8Kim H D, Zhai Chengxiang. Generating comparative summaries of contradictory opinions in text [ C ]//Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York: ACM, 2009 : 385 - 394.
  • 9Turney P D. Thumbs up or thumbs down? Semantic orientation ap- plied to unsupervised classification of reviews [ C ]//Proceedings of the 40th Annual Meeting on Association for Computational Linguis-tics. Stroudsburg : ACL, 2002:417-424.
  • 10Sun Wenjun,Pan Mingyang ,Ye Qiang. Comparative study on ob- jective and subjective emotional tendencies of online reviews from different sources [ C ]//Internet Technology and Applications ( iTAP), 2011 International Conference on. Wuhan : IEEE, 2011 : 1-4.

二级参考文献52

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2娄德成,姚天昉.汉语句子语义极性分析和观点抽取方法的研究[J].计算机应用,2006,26(11):2622-2625. 被引量:64
  • 3徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:123
  • 4姚天昉,娄德成.汉语语句主题语义倾向分析方法的研究[J].中文信息学报,2007,21(5):73-79. 被引量:78
  • 5Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the semantic orientation of adjectives[A]. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C], 1997:174- 181.
  • 6Turney, Peter, Littman Michael. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Systems, 2003, 21(4): 315- 346.
  • 7Turney ,Peter. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[A]. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics[C]. 2002:417 -424.
  • 8Bo Pang,Lillian Lee, Shivanathan Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing[C]. 2002:79 - 86.
  • 9Bo Pang,Lillian Lee. Seeing Stars: Exploiting Class Relationships for Sentiment Categorizalion with respect to Rating Seales[A]. ACL2005, 115-124.
  • 10K Dave, S lawrence, DM Pennock. , Mining the peanut gallery: opinion extraction and semantic classification of product reviews[A]. WWW2003, 519-28.

共引文献688

同被引文献195

引证文献18

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部