摘要
Mechanical properties of a closed-cellular sialic foamed ceramic are investigated by compressive tests. The sialic foamed ceramic under uniaxial stress compression shows brittleness and the flow stress increases with the strain rate. The engineering stress-engineering strain curve under uniaxial strain compression could be divided into three stages: linear elasticity, collapsed plateau and densification. The unloading elastic modulus, Poisson ratio and energy absorption ability are discussed. Shelly cellular material made by sialic foamed ceramic is applied into the stress distribution layer in the defense structure. Field explosion experiments are performed for the sand based stress distribution layer and shelly cellular material based layer. Compared with sand, the shelly cellular material reduces the peak stress of the blast wave.
Mechanical properties of a closed-cellular sialic foamed ceramic are investigated by compressive tests. The sialic foamed ceramic under uniaxial stress compression shows brittleness and the flow stress increases with the strain rate. The engineering stress-engineering strain curve under uniaxial strain compression could be divided into three stages: linear elasticity, collapsed plateau and densification. The unloading elastic modulus, Poisson ratio and energy absorption ability are discussed. Shelly cellular material made by sialic foamed ceramic is applied into the stress distribution layer in the defense structure. Field explosion experiments are performed for the sand based stress distribution layer and shelly cellular material based layer. Compared with sand, the shelly cellular material reduces the peak stress of the blast wave.
基金
Supported by the National Natural Science Foundation of China under Grant Nos 11202206 and 11102205, and China Post-doctoral Science Foundation (2011M501057).