期刊文献+

Carbonate-salt-based composite materials for medium- and high-temperature thermal energy storage 被引量:19

Carbonate-salt-based composite materials for medium- and high-temperature thermal energy storage
原文传递
导出
摘要 This paper discusses composite materials based on inorganic salts for medium- and high-temperature thermal energy storage application. The composites consist of a phase change material (PCM), a ceramic material, and a high thermal conductivity material. The ceramic material forms a microstructural skeleton for encapsulation of the PCM and structural stability of the composites; the high thermal conductivity material enhances the overall thermal conductivity of the composites. Using a eutectic salt of lithium and sodium carbonates as the PCM, magnesium oxide as the ceramic skeleton, and either graphite flakes or carbon nanotubes as the thermal conductivity enhancer, we produced composites with good physical and chemical stability and high thermal conductivity. We found that the wettability of the molten salt on the ceramic and carbon materials significantly affects the microstructure of the composites. This paper discusses composite materials based on inorganic salts for medium- and high-temperature thermal energy storage application. The composites consist of a phase change material (PCM), a ceramic material, and a high thermal conductivity material. The ceramic material forms a microstructural skeleton for encapsulation of the PCM and structural stability of the composites; the high thermal conductivity material enhances the overall thermal conductivity of the composites. Using a eutectic salt of lithium and sodium carbonates as the PCM, magnesium oxide as the ceramic skeleton, and either graphite flakes or carbon nanotubes as the thermal conductivity enhancer, we produced composites with good physical and chemical stability and high thermal conductivity. We found that the wettability of the molten salt on the ceramic and carbon materials significantly affects the microstructure of the composites.
出处 《Particuology》 SCIE EI CAS CSCD 2014年第4期77-81,共5页 颗粒学报(英文版)
基金 supported by the Focused Deployment Project of the Chinese Academy of Sciences(KGZD-EW-302-1) Key Technologies R&D Program of China(No.2012BAA03B03) Natural Science Foundation of China(Grant No.21106151) the UK Engineering and Physical Sciences Research Council(EPSRC)under grant EP/K002252/1
关键词 Thermal energy storage Composite materials Microstructure Thermal conductivity Phase change material Thermal energy storage Composite materials Microstructure Thermal conductivity Phase change material
  • 相关文献

参考文献10

  • 1Acem, Z .. Lopez,J., & Palomo Del Barrio, E. (201 0). KNO3/NaNO3 - Graphite materials for thermal energy storage at high temperature: Part I - Elaboration methods and thermal properties. Applied Thennal Engineering, 3D, 1580-1585.
  • 2Dujardin, E., Ebbesen, T. W., Hiura, H., & Tanigaki, K. (1994). Capillarity and wetting of carbon nanotubes. Science, 265,1850-1852.
  • 3German, R. M., Suri, P., & Park, S.J. (2009). Review: Liquid phase sintering.Journal of Materials Science, 44,1-39.
  • 4German, R. M. (2010). Coarsening in sintering: Grain shape distribution, grain size distribution, and grain growth kinetics in solid-pore systems. Critical Reviews in Solid State and Materials Sciences, 35, 263-305.
  • 5Guillot, S., Faik, A., Rakhmatullin, A., Larnbert.J., Veron, E., Echegut, p .. et al. (2012). Corrosion effects between molten salts and thermal storage material for concentrated solar power plants. Applied Energy, 94,174-181.
  • 6Lopez, J .. Acem, Z., & Palomo Del Barrio, E. (2010). KNO3/NaNO3 - Graphite materials for thermal energy storage at high temperature: Part II - Phase transition properties. Applied Thennal Engineering, 3D, 1586-1593.
  • 7Pincemin, S .. Olives, R., Py, X, & Christ, M. (2008). Highly conductive composites made of phase change materials and graphite for thermal storage. Solar Energy Materials and Solar Cells, 92, 603-613.
  • 8Tammer, R. (2008). Energy storage for direct steam solar power plants. D1STOR Report No. SES6-CT-2004-503526.
  • 9Yuan, G., Li, X., Dong, Z., Westwood, A., Cui, Z., Cong, Y., et al. (2012). Graphite blocks with preferred orientation and high thermal conductivity. Carbon, 50, 175-182.
  • 10Zhao, C. Y., & Wu, Z. G. (2011). Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite. Solar Energy Materials and Solar Cells, 95, 636-643.

同被引文献131

引证文献19

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部