期刊文献+

电力系统节能优化控制过程仿真分析 被引量:2

Simulation Analysis of Energy Saving Optimization Control Process of Power System
下载PDF
导出
摘要 研究电力系统节能优化控制问题。传统的PSO节能控制方法以电力系统总发电成本消耗最小为寻优目标,但是在线路阻抗角较小等特殊情况下,输电线路传输的功率与成本之间呈现弱耦合性,此时把功率与成本关联计算,会引起控制过程的不收敛,控制结果效果差。提出采用多重自适应粒子群的电力系统节能控制算法。算法首先生成大量随机粒子,然后根据当前成本与能耗的最优位置和全局最优位置更新粒子的位置和速度,同时在迭代过程中不断调整调度优化的惯性权重和学习因子,使得所有粒子不断逼近节能调度的全局最优值。仿真结果表明,新的粒子群算法在函数最优值上的搜索精度高于同时期的两种粒子群算法。将改进算法用于电力系统优化仿真中,可以有效的优化电力能耗,实用性高。 Energy saving optimization control problem of power system was researched in this paper. An energy saving control algorithm of power system was proposed based on multiple adaptive particle swarm. Firstly, a large number of random particles were generated in this algorithm and then based on the current cost and the optimal location of energy consumption as well as the global optimal position, the particle's position and speed were updated. At the same time, in the iteration process, inertia weight and learning factor of scheduling optimization were constantly adjusted to make all particles to close to the global optimal value of the energy saving scheduling. Simulation experi- ments show that the search accuracy of the function's optimal value using new particle swarm optimization ( pso), is higher than the two kinds of particle swarm optimization (pso) algorithms at the same period. The application of im- proved algorithm on power system's optimizing simulation analysis can effectively optimize the power energy consump- tion and the practicability is high.
作者 谢晶
出处 《计算机仿真》 CSCD 北大核心 2014年第8期110-113,共4页 Computer Simulation
基金 小型家用垂直轴风力发电系统的设计研究(黔科合J字LKS[2011]39)
关键词 粒子群算法 自适应 惯性权重 学习因子 Particle swarm optimization (PSO) Self - adaption Inertia weight learning factor
  • 相关文献

参考文献3

二级参考文献23

  • 1范育顺 曹军威.复杂系统的面向对象建模、分析与设计[M].北京:清华大学出版社,2000..
  • 2Brits R, Engelbrecht A P, Fan den Bergh. A Niching Particle Swarm Optimizer[A]. Proc Conf on Simulated Evolution and Learning[C]. Singapore, 2002.
  • 3Brits R, Engelbrecht A P, Fan den Bergh. Scalability of Niche PSO[A]. Proc IEEE Int Conf on Intelligence Symposium[C]. Indianapolis, 2003: 228-234.
  • 4Fredric M Ham, Ivica Kostanic. Principles of Neurocomputing for Science and Engineering[M]. McGraw Hill, 2001.
  • 5Clerc M, Kennedy J. The Particle Swarm -- Explosion, Stability, Andconvergence in a Multidimensional Complex Space[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 58-73.
  • 6Mendes R, Kennedy J, Neves J. The Fully Informed Particle Swarm: Simpler, Maybe Better[J]. IEEE Trans on Evolutionary Computation, 2004 8(6): 204-210.
  • 7Ioan Cristian Trelea. Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection[J]. Information Processing Letters, 2003, 85: 317-325.
  • 8F van den Bergh. Particle Swarm Weight Initialization in Multi-layer Neural Networks[A]. Development and Pracrice of Artificial Intelligence Techniques[C]. Durban, 1999: 41-45.
  • 9F van den Bergh, Engelbrecht A P. Cooperative Learning in Neural Networks Using Particle Swarm Optimizers[J]. South Africa Computer J,2000, 26(11): 84 - 90.
  • 10F van den Bergh, Engelbrecht A P. Training Product Unit Networks Using Cooperative Particle Swarm Optimizers[A]. Proc IEEE Int Conf on Neural Networks[C]. Washington DC,2001.

共引文献28

同被引文献15

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部