期刊文献+

一种基于双特征的联合脑-机接口系统设计 被引量:1

A system Design of a Hybrid BCI Based on the Dual characteristics
下载PDF
导出
摘要 与传统基于单一脑电信号的脑-机接口相比,基于多种特征信号的联合脑-机接口能有效提高脑-机接口性能。在基于稳态视觉诱发电位和P300诱发电位的联合使用的可行性基础上,提出了新的刺激编码方式,构建了一种基于两种特征的联合脑-机接口系统。通过设计3×3字符刺激矩阵,矩阵中纵列按各自设定频率闪烁诱发稳态视觉诱发电位,横行随机出现蓝色框诱发P300。实验表明,当受试者注视并关注目标字符,两种特征脑电信号能够被同时诱发,且对脑电信号中两种特征进行识别能够检测出受试者选取的字符。与传统基于P300的字符脑-机接口相比,刺激诱发时间减少了一半,从根本上提高了脑-机接口的速度。在以后工作中,系统可以扩展到更大矩阵(如6×6),构建更为实用的联合脑-机接口系统。 Hybrid brain- computer interface (BCI) based on the multi- feature of EEG signals can effectively improve the system performance comparing to the traditional BCI based on the single EEG feature. In consideration to the combination of SSVEP and P300, a new encoding - stimulus model is proposed and then a hybrid BCI paradigm model based on the combination of SSVEP and P300 EEG is devised. In a 3 by 3 character stimulus matrix, columns of characters are flicked at a set frequency to induce SSVEP and a random blue frame is shown on rows to induce P300. Experiments show that when subjects stare a target character, SSVEP and P300 can be induced simultaneous- ly. Therefore, the identification of P300 and SSVEP can detect the target character which subjects selected. Com- pared with the traditional P300 BCI paradigm for character - input, the proposed system is able to reduce running time and fundamentally improve the system processing speed. As a future work, an enhancement with more characters in a matrix ( such as 6 by 6) can be extended so to achieve a more practical BCI system.
出处 《计算机仿真》 CSCD 北大核心 2014年第8期222-225,258,共5页 Computer Simulation
基金 国家自然科学基金面上项目(61175118) 天津市自然科学基金面上项目(12JCYBJC19500) 高等学校博士学科点专项科研基金新教师类(20101202120006)
关键词 脑-机接口 脑电信号 稳态视觉诱发电位 Brain -computer interface (BCI) EEG Steady -state visually evoked potentials (SSVEP)
  • 相关文献

参考文献1

二级参考文献8

  • 1Wolpaw JR, Birbaumer N, McFarland D J, et al. Brain-computer interfaces for communication and control [ J ]. Clinical Neurophysiology, 2002, 113 (6) :767 - 791.
  • 2Pfurtscheller G, Allison BZ, Brunner C, et al. The hybrid BCI [J]. Frontiers in Neuroscience, 2010, 4(Article 42) :1 -11.
  • 3LI Yuanqing, WANG Chuanchu, ZHANG Haihong, et al. An EEG based BCI system for 2D cursor control [ C ] // International Joint Conference on Neural Networks 2008, Hong Kong : 2008:2214 - 2219.
  • 4Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles [ J ]. Clinical Neurophysiology, 1999, 110:1842 - 1857.
  • 5Guo Fei, Hong Bo, Gao Xiaorong, et al. A brain-computer interface using motion-onset visual evoked potential [ J]. Journal of Neural Engineering, 2008, 5 :477 - 485.
  • 6Hong Bo, Guo Fei, Liu Tao, et al. N200 - speller using motion- onset visual response [ J ]. Clinical Neurophysiology, 2009, 120:1658 - 1666.
  • 7Zhang Dan, Xu Honglai, Wu Wei, et al. Integrating the spatial profile of the N200 speller for asynchronous brain-computer interfaces [ C ]// Proceedings of 33 a Annual International Conference of the IEEE EMBS. Boston: IEEE, 2011:4564 - 4567.
  • 8段放,高小榕.一种基于运动想象的脑-机接口时空滤波器迭代算法[J].中国生物医学工程学报,2011,30(1):11-16. 被引量:9

共引文献12

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部