期刊文献+

物流货箱温度异变信号实时挖掘技术仿真

Simulation on Real-Time Mining Technology of Temperature Variation Signals for Logistics Case
下载PDF
导出
摘要 在物流货箱内温度异变信号的准确识别问题的研究中,由于集装箱内温度随着货车运输地点不同,呈现非可控性突变。RFID技术在不同区域采集的温度在非可控框架内容易发生温度偏差,造成温度信号突变。传统的温度挖掘模型对不同环境下造成的温度偏差无法做出提前预判,形成虚报警。为解决上述问题,提出基于拓扑关系搜索模型的物流货箱温度异变信号实时挖掘方法。对物流货箱温度数据进行信息重构,为温度异变信号挖掘提供依据。建立温度信号采样点拓扑关系搜索模型,完成异变信号的搜索,实现物流货箱温度异变信号的实时挖掘。实验结果表明,利用改进算法进行物流货箱温度异变信号实时挖掘,能够保证挖掘的精确度,从而为物流运输提供合理的决策依据。 Traditional temperature mining model for logistics case cannot make prediction of temperature deviation in advance, which may form a false alarm. To solve this problem, a case temperature variation signal real - time mining method is given based on the topological relationship. Through logistics case temperature data reconstruction, the temperature variation signal is obtained. A temperature signal sampling points topology search model is setup, and the temperature variation signal of logistics container is real - time searched and mined. Experimental results show that the improved algorithm can guarantee the accuracy of the excavation, so as to provide a basis for rational decision - making in logistics transportation.
出处 《计算机仿真》 CSCD 北大核心 2014年第8期356-359,共4页 Computer Simulation
基金 河南省科技厅2011年科技发展计划项目(112102210334)
关键词 物流货箱 温度 异变信号 实时挖掘 The logistics case Temperature Variation signal Real - time mining
  • 相关文献

参考文献8

二级参考文献55

  • 1丁艳辉,王洪国,高明,谷建军.一种基于矩阵的关联规则挖掘新算法[J].计算机科学,2006,33(4):188-189. 被引量:13
  • 2(加)HanJ KamberM.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 3Pahlavan K,Krishrmmurthy P.无线网络通信原理与应用[M].刘剑,译.北京:清华大学出版社,2002.
  • 4Agrawa R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[C].//Proc, of ACM SIGMOD International Conference on Management of Date. Washington DC,1993 : 207-216.
  • 5Park J S, Ming-Syan C, Philip S Y. An Effective Hash Based Algorithm for Mining Association Rules[C].// Proc of ACMSIGMOD. 1995 : 175-185.
  • 6Brin S, Motwai R, Ullman J D, et al. Dynamic Itemset Counting and Implication Rules for Market BasketData [C].//Proc. of ACM SIGMOD Conference on Management of Data. 1997:265-276.
  • 7Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules in Large Databaes[C].//Proc. of 1994 International Conference on Very Large Databases. 1994:487-499.
  • 8Savasere S, Omiecinski E, Navathe S. An Efficient Algorithm for Mining Association Rules in Large Databases[C].//Proc. of 21^St VLDB. 1995 : 432-444.
  • 9Dunkel B, Soparkar N. Data Organization and Access for Efficient Data Mining[C].//Proc. of 15th IEEE Intl. Conf. on Data Engineering. 1999 : 522-529.
  • 10Han J, Fu Y J. Mining Multiple-Level Association Rules in Large Database[J]. IEEE Trans. on Knowledge and Data Engineering, 1999,11(5) : 798-805.

共引文献369

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部