期刊文献+

基于电子舌技术的鱼新鲜度定性、定量分析 被引量:15

Quantitative and Qualitative Analysis of Fish Freshness based on Electronic Tongue Technique
原文传递
导出
摘要 为实现鱼新鲜度的快速定性、定量分析。采用电子舌技术对4℃下不同冷藏天数的鲳鱼进行检测。同时测量鲳鱼体内挥发性盐基氮(Total volatile basic nitrogen,TVB-N)含量及细菌总数(Total viable count,TVC)。对电子舌数据进行分析处理,构建了K最近邻(K-nearest neighbor,KNN)判别模型和BP人工神经网络(Back-propagation artificial neural network,BP-ANN)模型定性评价鲳鱼新鲜度。结果显示,KNN模型的训练集、测试集识别率分别为:99.11%和98.21%;BP-ANN模型的训练集、测试集识别率分别为:92.86%和91.07%。构建了电子舌数据和TVB-N及TVC之间的支持向量机回归模型对鲳鱼新鲜度进行定量评价,独立样本检验结果显示,对TVB-N及TVC的预测,支持向量机回归模型的预测值和实测值的相关系数分别为:0.9727和0.9457,预测均方根误差分别为2.8×10-4 mg/g和0.052 log(CFU/g)。可见三种模型均能达到较好的效果。研究表明:电子舌技术在鱼新鲜度的快速定性、定量评价中具有很大的潜力。 In order to quantitatively and qualitatively evaluate the fish freshness, an electronic tongue was employed to detect the pomfret stored at 4 ℃ for different days. The total volatile basic nitrogen(TVB-N) and total viable count(TVC) of the fish samples were detected concurrently. K-nearest neighbor(KNN)model and back-propagation artificial neural network( BP-ANN) model were built to assess the freshness of the fish. Results showed that identification rate of training set and prediction set of KNN model were 99.11% and 98.21% respectively. While, the identification rate of training set and prediction set of BP-ANN model were 92.81% and 91.07% respectively. Support vector machine regression(SVR) model was established between the electronic tongue data and TVB-N as well as TVC for quantitative determination. The correlation coefficients between SVR predicted and measured TVB-N and TVC values were respectively 0.9727 and 0.9457, and root mean square error of prediction were 2.8×10-4 mg/g and 0.052 log(CFU/g), respectively. The overall results sufficiently demonstrate that the electronic tongue technique combined with appropriate pattern recognition method has a great potential to quantitative and qualitative evaluation of fish freshness rapidly.
出处 《现代食品科技》 EI CAS 北大核心 2014年第7期247-251,267,共6页 Modern Food Science and Technology
基金 国家自然科学基金资助项目(31071549) 公益性行业(农业)科技专项(201003008-04) 江苏省高校优势学科建设工程资助项目 江苏省普通高校研究生科研创新计划项目(CXZZ13_0698)
关键词 电子舌 鱼新鲜度 K最近邻 BP神经网络 支持向量机回归 electronic tongue fish freshness K-nearest neighbor back-propagation artificial neural network support vector machine regression
  • 相关文献

参考文献14

  • 1Kamalika Tiwari, Bipan Tudu, Rajib Bandyopadhyay, et al. Identification of monofloral honey using voltammetric electronic tongue [J]. Journal of Food Engineering, 2013, 117 205-210.
  • 2L Nufiez, X Cet6, M I Pividori, et al. Development and application of an electronic tongue for detection and monitoring of nitrate, nitrite and ammonium levels in waters [J]. Microchemical Journal, 2013, 110:273-279.
  • 3孙红梅,张春晖,李侠,李银,董宪兵,王春青,谢小雷.鸡骨素及其酶解液Maillard反应产物滋味成分研究[J].现代食品科技,2013,29(8):1872-1877. 被引量:22
  • 4Inmaculada Campos, Miguel Alcafiiz, Daniel Aguadod, et al. A voltammetric electronic tongue as tool for water quality monitoring in wastewater treatment plants [J]. Water Research, 2012, 46(8): 2605-2614.
  • 5韩剑众,黄丽娟,顾振宇,邓少平.基于电子舌的鱼肉品质及新鲜度评价[J].农业工程学报,2008,24(12):141-144. 被引量:76
  • 6Luis Gil, Jos6 M. Barat, Isabel Escriche, et al. An electronic tongue for fish freshness analysis using a thick-film array of electrodes [J]. Microchim Acta, 2008, 163:121-129.
  • 7G Olafsd6ttir, E Martinsd6ttir, J Oehlenschliger, et al. Methods to evaluate fish freshness in research and industry [J]. Trends in Food Science & Technology, i997, 8(8): 258- 265.
  • 8SC/T3032-2007,水产品中挥发性盐基氮的测定[S].
  • 9GB4789-2-2010,食品微生物学检验 菌落总数的测定[S].
  • 10Hongmei Chen, Yucai Ning, Xudong Sun. Production safety evaluation model based on principal component analysis [J]. Procedia Engineering, 2011, 26:1949-1955.

二级参考文献28

共引文献118

同被引文献247

引证文献15

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部