摘要
提出了一种随机段模型系统的说话人自适应方法。根据随机段模型的模型特性,将最大似然线性回归方法引入到随机段模型系统中。在"863-test"测试集上进行的汉语连续语音识别实验显示,在不同的解码速度下,说话人自适应后汉字错误率均有明显的下降。实验结果表明,最大似然线性回归方法在随机段模型系统中同样能取得较好的效果。
A speaker adaptation method of Stochastic Segment Model (SSM) is proposed.According to the SSM's characteristics,the theory of Maximum Likelihood Linear Regression (MLLR) method is introduced into the SSM-based systems.Continuous Chinese speech recognition experiment on " 863test" test suite shows that the proposed method makes the error rate of Chinese characters decrease obvi ously under different decoding speeds.Experiment results indicate that the proposal can also improve the recognition performance on the SSM-based systems.
出处
《计算机工程与科学》
CSCD
北大核心
2014年第8期1604-1608,共5页
Computer Engineering & Science
基金
国家自然科学基金资助项目(91120303
90820303
90820011)
国家973计划资助项目(2004CB318105)
国家863计划资助项目(20060101Z4073
2006AA01Z194)
关键词
语音识别
说话人自适应
最大似然线性回归
随机段模型
speech recognition
speaker adaptation
maximum likelihood linear regression
stochastic segment model