期刊文献+

基于磁致伸缩效应的纵向导波产生与传播过程研究 被引量:2

Study of generation and propagation processes of longitudinal guided wave based on magnetostriction effect
原文传递
导出
摘要 针对铁磁性材料中磁致伸缩导波的产生机理,利用有限元软件创建了非线性力磁耦合磁致伸缩有限元模型,分析了非线性铁磁性在外加磁场作用下磁致伸缩力的产生,以及在该力作用下材料中质点的位移情况,实现了基于铁磁性材料非线性力磁耦合本构关系的磁致伸缩导波的产生及传播过程仿真研究.仿真结果表明,当铁磁性管道在由永磁体产生的偏置磁场及通过高频交流电流线圈所产生磁场的共同作用下,管道内质点将受到平行于磁场方向的磁致伸缩力的作用并产生高频振动形成磁致伸缩导波,通过对各质点位移情况分析可以清楚了解到导波的传播及接收过程,并通过实验验证了该仿真研究的可靠性. In light of the mechanism of guided wave based on the magnetostriction,a finite element model of magneto-mechanical nonlinear coupling is set up.The magnetostrictive force and the displacement of particle are analyzed.The generation and propagation processes of the longitudinal based on the magnetostriction is simulated.The results show that,by the bias magnetic and high frequency ac magnetic field,the magnetostrictive force which parallel with the magnet is imposed on the particle and the guided wave is formed.Using the displacement of particle the propagation and receive processes of guided wave is clearly displayed.Furthermore,the simulation is verified by the experiments successfully.
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2014年第4期548-551,570,共5页 Engineering Journal of Wuhan University
基金 国家自然科学基金项目(编号:50875077) 湖北省优秀中青年科技创新团队计划项目(编号:T201105) 教育部科学技术重点研究项目(编号:211110)
关键词 有限元仿真 磁致伸缩传感器 导波 磁致伸缩效应 finite element simulation guided wave magnetostrictive sensor magnetostriction effect
  • 相关文献

参考文献13

  • 1王悦民,孙丰瑞,康宜华,武新军.基于磁致伸缩效应的管道检测纵向导波模型[J].华中科技大学学报(自然科学版),2006,34(12):65-67. 被引量:11
  • 2Remo R,Frederic C,Peter B N,et al.Quantitative modeling of the transduction of electromagnetic acoustic transducers operating on ferromagnetic media[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2010,57(12):115-119.
  • 3Thompson R B.A model for the electromagnetic generation and detection of Rayleigh and lamb waves[J].IEEE Trans.Sonics Ultrason,1973,20(4):340-346.
  • 4Il’in I V,Kharitonov A V.Theory of EMA method of detecting Rayleigh waves for ferromagnetic and ferrimagnetic materials[J].Sov.J.Nondestructure Testing,1980,16(1):549-554.
  • 5Wilbrand A.EMUS probes for bulk waves and Rayleigh waves:model for sound field and efficiency calculations[J].New Procedures in Nondestructive Testing,1983,20(3):71-82.
  • 6Wilbrand A.Quantitative modeling and experimental analysis of the physical properties of electromagnetic ultrasonic transducers[J].Review of Progress in Quantitative Nondestructive Evaluation,1987,7:671-678.
  • 7Ogi H.Field dependence of coupling efficiency between electro-magnetic field and ultrasonic bulk waves[J].J.Appl,1997,82(8):3940-3949.
  • 8贾振元,王晓煜,王福吉.超磁致伸缩执行器动力学模型及数值模拟[J].大连理工大学学报,2008,48(3):368-372. 被引量:8
  • 9Kannan K S,Dasgupta A.A nonlinear Galerkin finiteelement theory for modeling magnetostrictive smart structures[J].Smart Mater.Structure,1997,6(3):341-350.
  • 10Iudwig R,Dai X W.Numerical simulation of electromagnetic acoustic transducer in the time domain[J].J.Appl.Phys.,1991,69(1):89-98.

二级参考文献21

共引文献33

同被引文献22

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部