期刊文献+

使用过训练提升词性标注依存句法联合模型的速度

Improving the Efficiency for Joint POS-Tagging and Dependency Parsing with Uptraining
下载PDF
导出
摘要 词性标注和依存句法分析是自然语言处理领域中句子级别基本分析技术的两个重要任务,一般来说词性标注是依存句法分析的一个前提条件。基于联合分析的方法将这两个任务在一个统一的统计模型中联合处理能避免错误传播这类问题的发生,因此这种联合模型能取得比较好的性能。但是这种联合模型会带来算法上的时间复杂度的额外开销,因此导致联合分析的方法,速度非常慢。本文提出一种基于过训练的方法,通过极少量的性能损失,使得联合模型的解码速度提升了6倍。 POS tagging and dependency parsing are basic tasks of sentence -level natural language processing. Generally POS - tagging is a necessary prerequisite for dependency parsing. The joint models which link the two tasks together and process them by a unified model have achieved improved performances, because joint modeling can avoid the error - propagation problem. However, the time complexity of joint models can be always so large, thus yields much slower speed. This paper proposes a method based on uptraining technique to improve the speed of joint models, with only very little loss in performances.
出处 《智能计算机与应用》 2014年第4期21-24,共4页 Intelligent Computer and Applications
基金 国家重点基础研究发展计划(973)(2014CB340503) 国家自然科学基金面上项目(61133012 61370164)
关键词 词性标注 依存句法分析 联合模型 过训练 POS - Tagging Dependency Parsing Joint Models Uptraining
  • 相关文献

参考文献1

二级参考文献9

  • 1Michael A. Covington. A fundamental algorithm for dependency parsing [C]//Proceedings of the 39th Annual ACM Southeast Conference,2001.
  • 2Hiroyasu Yamada, Yuji Matsumoto. Statistical dependency analysis with support vector machines [C]//Proceedings of 8^th International Workshop on Parsing Technologies. 2003:195-206.
  • 3Joakim Nivre, Mario Scholz. Deterministic Dependency Parsing of English Text [C]//Proceedings of COLING. 2004:64-70.
  • 4Jason Eisner. Bilexical grammars and a cubic-time probabilistic parser [C]//Proceedings of the International Workshop on Parsing Technologies, MIT. 1997:54 65.
  • 5Ryan McDonald, Koby Crammer and Fernando Pereira. Online Large-Margin Training of Dependency Parsers [C]//Association for Computational Linguistics (ACL). 2005.
  • 6Ryan McDonald and Fernando Pereira. Online Learning of Approximate Dependency Parsing Algorithms [C]//European Association for Computational Linguistics (EACL). 2006.
  • 7Xavier Carreras. Experiments with a high-order projective dependency parser [C]//Proceedings of the CoNLL 2007 Shared Task Session of EMNLP-CoN- LL. 2007:957-961.
  • 8Joakim Nivre and J. Nilsson. Pseudo-Projective Dependency Parsing [C]//Proc. of the 43rd Annual Meeting of the ACL. 2005: 99-106.
  • 9Wanxiang Che, Zhenghua Li, Yuxuan Hu, Yongqiang Li, Bing Qin, Ting Liu, Sheng Li. A Cascaded Syntactic and Semantic Dependency Parsing System [C]// CoNLL 2008.. Proceedings of the 12th Conference on Computational Natural Language Learning, 2008: 238- 242.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部