期刊文献+

基于位置的社交网络研究综述 被引量:3

An Overview of Location Based Social Network
下载PDF
导出
摘要 当今,对线上社交网络的研究和线下人们在物理世界中活动的研究都已经很成熟,将线上社交网络和线下物理世界结合起来的异构网络成为研究热点,基于位置的社交网络是通过位置信息理解用户行为和偏好的新型异构网络。本文从服务和应用的角度对基于位置的社交网络的研究情况进行分析总结,为未来对异构网络进行深入研究以及在基于位置的社交网络中提出新的应用奠定基础。最后,本文对基于位置的社交网络的研究情况进行总结与展望。 Today, online social network and user' s activity in offline physical world have been studied very well. Heterogeneous network which combines online soeial network and offline physical world becomes a hot research. Location Based Social Network is a new heterogeneous network which can understand user' s behavior and preference through location information. This paper analyzes and summarizes the relevant research about LBSN from the aspect of service and application, providing theoretical basis for future research of heterogeneous network and putting forward new applications in I,BSN. Furthermore, the paper presents the future research on location based social network.
出处 《智能计算机与应用》 2014年第4期60-62,67,共4页 Intelligent Computer and Applications
关键词 基于位置的社交网络 位置信息 推荐 Location Based Social Network Location Information Recommendation
  • 相关文献

参考文献4

  • 1Xiangye Xiao,Yu Zheng,Qiong Luo,Xing Xie.Inferring social ties between users with human location history[J].Journal of Ambient Intelligence and Humanized Computing.2014(1)
  • 2Hyoseok Yoon,Yu Zheng,Xing Xie,Woontack Woo.Social itinerary recommendation from user-generated digital trails[J].Personal and Ubiquitous Computing.2012(5)
  • 3Yu Zheng,Lizhu Zhang,Zhengxin Ma,Xing Xie,Wei-Ying Ma.Recommending friends and locations based on individual location history[J].ACM Transactions on the Web (TWEB).2011(1)
  • 4Yu Zheng,Xing Xie.Learning travel recommendations from user-generated GPS traces[J].ACM Transactions on Intelligent Systems and Technology (TIST).2011(1)

同被引文献20

  • 1张利军,李战怀,王淼.基于位置信息的序列模式挖掘算法[J].计算机应用研究,2009,26(2):529-531. 被引量:12
  • 2Guy I, Ronen I, Wilcox E. Do you know?: Recommending people to invite into your social network[C]// International Conference on Intelligent User Interfaces. 2009:77-86.
  • 3McDonald D W. Recommending collaboration with social networks: A comparative evaluation[C]// Proceedings of the Conference on Human Factors in Computing Systems. 2013:598-600.
  • 4Ehrlich K, Lin C Y, GriffithsFisher V. Searching for experts in the enterprise: Combining text and social network analysis[C]// Proceedings of the International ACM SIGGROUP Conference on Supporting Group Work. 2007:117-126.
  • 5Nisgav A, PattShamir B. Finding similar users in social networks: Extended abstract[C]// Proceedings of the 21st Annual ACM Symposium on Parallel Algorithms and Architectures. 2009:169-177.
  • 6Chen Yukun, Jiang Kai, Zheng Yu, et al. Trajectory simplification method for locationbased social networking services[C]// Proceedings of the International Workshop on Location Based Social Networks. 2009:33-40.
  • 7Krumm J, Horvitz E. Predestination: Inferring destinations from partial trajectories[C]// Proceedings of the 8th International Conference on Ubiquitous Computing. 2006:243-260.
  • 8Giannotti F, Nanni M, Pinelli F, et al. Trajectory pattern mining[C]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2008:330-339.
  • 9Li Quannan, Zheng Yu, Xie Xing, et al. Mining user similarity based on location history[C]// Proceedings of the 16th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems. 2008:134-136.
  • 10刘旭,易东云.基于局部相似性的复杂网络社区发现方法[J].自动化学报,2011,37(12):1520-1529. 被引量:40

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部