期刊文献+

频率域全波形反演中关于复频率的研究 被引量:13

Studies on complex frequencies in frequency domain full waveform inversion
下载PDF
导出
摘要 Laplace-Fourier域全波形反演可以利用简单的初始模型,从缺失低频信息的地震数据中得到长波长速度模型.Laplace-Fourier域全波形反演等价于本文的复频率全波形反演,但二者的实现方式不同,因此研究复频率全波形反演,可以为二者的对比研究并发展更有效的方法奠定重要基础.本文首先比较用线性增加模型作为初始模型时几个包含不同高低频成分的频率组的反演效果,再比较结合复频率之后各个频率组的反演效果,从简单模型和复杂模型的测试中都可以看出这种复频率+频率反演的方式对反演效果有明显改善. Based on a simple starting model, Laplace-Fourier domain full waveform inversion (FWI) can recover a long wavelength velocity model from seismic data lacking low-frequency information. Although Laplace-Fourier domain FWI is equivalent to complex-frequency FWI, their implementation details are different from each other. Therefore, studies on complexfrequency FWI can lay a good foundation for comparison between the two and for developing a more efficient approach. In this paper, we first compare frequency domain inversion results of different frequency groups from an initial velocity model that increases linearly with depth (let's call it linear complex freq lncrea ueneles sing velocity model later). Then we combine these frequency groups with to do FWI and also compare the inversion results, tests on simple and complex velocity model both show that this complex-frequency-plus-frequency inversion style helps improve the inversion results.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2014年第7期2302-2313,共12页 Chinese Journal of Geophysics
基金 国家自然科学基金项目(41274139 40974074)资助
关键词 复频率 频率域全波形反演 初始模型 Complex frequencies Frequency domain full waveform inversion~ Initial model
  • 相关文献

参考文献1

二级参考文献19

  • 1Pratt R G. Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model. Geophysics, 1999, 64(3): 888-901.
  • 2Virieux J, Operto S. An overview of full waveform inversion in exploration geophysics. Geophysics, 2009, 74(6): WCC1-WCC26.
  • 3Tarantola A. Inversion of seismic reflection data in the acoustic approximation. Geophysics, 1984, 49 (8): 1259- 1266.
  • 4Pratt R G. Frequency-domain elastic wave modeling by finite differences: A tool for cross-hole seismic imaging. Geophysics, 1990, 55(5): 626-632.
  • 5Pratt R G, Wothington M H. Inverse theory applied to multi-source cross-hole tomography, Part 1: Acoustic wave equation method. Geophysical Prospecting, 1990, 38 (3) : 287-310.
  • 6Pratt R G. Inverse theory applied to multi-source cross-hole tomography, Part 2: Elastic wave-equation method. Geophysical Prospecting, 1990, 38(3) : 311-329.
  • 7Pratt R G. Guass Newton and full Newton methods in frequency domain seismic waveform inversion. Geophysics, 1998, 173: 922-931.
  • 8Lysmer Drake. Methods in computational physics, Volume 11: Seismology: Surface waves and earth oscillations: A finite-element method for seismology. MA: Academic Press Inc., 1972: 181-216.
  • 9Marfurt K J. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics, 1984, 49(5): 533-549.
  • 10Marfurt K J, Shin C S. The future of iterative modeling in geophysical exploration. // Eisner E, ed. Handbook of Geophysical Exploration: I Seismic Exploration, Volume 21: Supercomputers in seismic exploration. New York: Pergamon Press, 1989: 203-228.

共引文献20

同被引文献145

引证文献13

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部