期刊文献+

矩形微细通道纳米流体沸腾流动阻力特性研究 被引量:5

Research on boiling flow resistance of nanofluid in rectangular microchannels
下载PDF
导出
摘要 以质量分数为0.5%的Fe3O4-H2O磁纳米流体为工质,分别在横截面积宽×高为0.6 mm×2.0 mm,1.0 mm×2.0mm和2.0 mm×2.0 mm 3种微槽内进行磁性纳米流体流动的沸腾流动阻力特性实验,分析不同磁感应强度对纳米流体沸腾传热两相摩擦压降的影响,并将本实验中0.6 mm×2.0 mm微槽道内的两相摩擦压降与现有理论模型及支持向量机预测模型进行比较。研究结果表明:外加磁场对纳米流体的流动特性产生明显的影响,两相摩擦压降在外加磁场作用时增大比较明显,且随着磁感应强度的增大而增大;两相摩擦压降随热流密度和质量通量的增大而增大;尺寸小的微槽两相摩擦压降显著比尺寸大的微槽的大。由于理论预测模型实验条件的差异性,3个理论预测模型均有较大误差,其中效果最好的M-H模型平均相对误差也高达35.7%。支持向量机模型效果很好,平均预测误差小于5%。 The boiling flow characteristics were experimentally investigated through the aluminum-based rectangular microchannels with different sizes of 0.6 mm×2.0 mm, 1.0 mm×2.0 mm and 2.0 mm×2.0 mm, using Fe3O4-H2O magnetic nanofluids with particle of 0.5% (mass fraction) as the working fluids. The effects of the magnetic induction intensity, the heat flux density, the mass flux and the size of the channel on the two-phase frictional pressure drop were investigated, and then the value of the two-phase friction pressure drop was compared with the prediction value of the existing theory models and the support vector machine model. The results show that the magnetic induction influences obviously the flow characteristics of nanofluids. The two-phase frictional pressure drop increases greatly compared with non magnetic field, and it increases significantly with the magnetic induction intensity, the heat flux density and the mass flux. With the decrease of the channel’s size, the frictional pressure drop also markedly increases. The three theory models all have big average error in different experiment conditions, and the M-H model can make the average error at 35.7%. The support vector machine model has better prediction with the average error of 4.68%.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第7期2209-2216,共8页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(21276090)
关键词 微细通道 磁纳米流体 两相摩擦压降 支持向量机 micro-channel magnetic nanofluid two-phase frictional pressure drop support vector machines
  • 相关文献

参考文献13

  • 1Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles[C]// International Mechanical Engineering Congress and Exhibition. San Francisco, 1995: 12-17.
  • 2Lee J, Mudawar I. Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in microchannels[J]. Int J Heat and Mass Transfer, 2007, 50: 452-463.
  • 3Ribatski G, Wojtan L, Thome J R. An analysis of experimental data and prediction methods for two-phase frictional pressure drop and flow boiling heat transfer in micro-scale channels[J].Experimental Thermal and Fluid Science, 2006, 31 (1): 1-19.
  • 4Ho C J, Wei L C. An experimental investigation of forced convective cooling performance of a microchannel heat sink with A12O3-water nanofluid[J]. Applied Thermal Engineering, 2012, 30: 96-103.
  • 5Bowers M B, Mudawar I. High flux boiling in low flow rate, low pressure drop mini-Channel and microcharmel heat sink[J]. International Journal of Heat and Mass Transfer, 1994, 37(2): 321-332.
  • 6Chisholm D. Two phase flow in pipelines and heat exchangers[M]. London and New York: G. Godwin in association with Institution of Chemical Engineers, 1983: 1-304.
  • 7Pehlivan K, Hassan I, Vaillancourt M. Experimental study on two-phase flow and pressure drop in millimeter-size channels[J]. Applied Thermal Engineering, 2006, 26: 1506-1514.
  • 8宁常军,罗小平.微通道内纳米流体换热与压降特性[J].中南大学学报(自然科学版),2012,43(8):3000-3006. 被引量:6
  • 9Mishima K, Hibiki T. Some characteristics of air water two phase flow in small diameter vertical tubes[J]. International Journal of Multiphase Flow, 1996, 22: 703-712.
  • 10Chisholm D. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow[J]. International Journal of Heat and Mass Transfer, 1967, 10(12): 1767-1778.

二级参考文献19

  • 1费业泰.误差理论与数据处理[M].北京:机械工业出版,1995.9-54.
  • 2Tuckerman D B, Pease R F W. High-performance heat sink for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129.
  • 3Kandlikar S G. Fundamental issues related to flow boiling in minichannels and microchaunel[J]. Experimental Thermal and Fluid Science, 2002, 26: 389-407.
  • 4Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles [C]//Intemational Mechanical Engineering Congress and Exhibition, San Francisco, 1995: 12-17.
  • 5Wang B X, Peng X F. Experimental investigation on liquid forced-convection heat transfer through microchannels[J]. Int J Heat and Mass Transfer, 1994, 37: 73-82.
  • 6Morini G L. Single-phase convective heat transfer in microchannels: A review of experimental results[J]. Int J Thermal Sci, 2004, 43(7): 631-651.
  • 7Ho C J, Wei L C. An Experimental investigation of forced convective cooling performance of a microchannel heat sink with Al203-water nanofluid[J]. Applied Thermal Engineering, 2010, 30: 96-103.
  • 8WEN Dong-sheng, D1NG Yu-long. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions[J]. Int J Heat and Mass Transfer, 2004, 47(24): 5181-5188.
  • 9CHEN Rei-yu, HUANG Guan-ming. Analysis of microchannel heat sink performance using nanofluids[J]. Applied Thermal Engineering, 2005, 25(17): 3104-3114.
  • 10Daungthongsuk W, Wongwises S. A critical review of convective heat transfer of nanofluids[J]. Renewable and Sustainable Energy Reviews, 2007, 11 (5): 797-817.

共引文献5

同被引文献34

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部