期刊文献+

三甲基萘脱烷基反应S-系统数值解析 被引量:1

Numerical analysis of dealkylation process of trimethylnaphthalene with S-system
下载PDF
导出
摘要 被称为S-系统的幂指数型解析法广泛应用在生物学研究中,但在化工领域应用很少.对该法在三甲基萘脱烷基管式催化反应器数值解析中的应用进行了阐述.将反应的相关微分方程组转化为S-系统标准形式,结合有限泰勒级数的一般算法进行S-系统解析,模拟了物料沿反应器长度的转化情况与反应达到稳定状态时的产物分布情况.运算结果与Runge-Kutta法运算结果吻合.选取不同操作条件进行计算,结果表明,压力增大有利于三甲基萘的转化和萘的生成,三甲基萘的转化率和萘的收率随反应时间的增加而增大,二甲基萘的收率随时间增加先增大后减小,一甲基萘的收率随时间增加而增大.S-系统解析对化工生产的模拟与分析具有高可靠性,解析结果对化工过程的平稳运行、故障诊断、优化设计具有指导意义. Power-law representation,called S-system,has been widely used in biology,but its application to chemical engineering is rare.An application of this representation to the numerical analysis of dealkylation of trimethylnaphthalene in a tubular catalytic reactor is introduced.The relevant differential equations for the reactions are recast into S-system canonical form and numerically solved by the generalized calculation algorithm of a finite Taylor-series method.The conversion of reactant as function of reactor length and the distribution of products at the steady state are simulated. Comparisons of the calculated results with those by the Runge-Kutta method indicate consistency of the calculation algorithm.The calculation results under different operating conditions reveal that increased pressure leads to higher conversion of trimethylnaphthalene and generation of naphthalene. The conversion of trimethylnaphthalene and the yield of naphthalene increase with reaction time,the yield of dimethylnaphthalene increases firstly and then decreases,and the yield of methylnaphthalene increases with reaction time.The S-system method is highly reliable for the simulation and analysis of chemical production and the numerical analytical results can be used for the smooth operation,fault diagnosis and optimized design of chemical processes.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2014年第4期397-402,共6页 Journal of Dalian University of Technology
关键词 S-系统 数值解析 过程模拟 萘的制备 S-system numerical analysis process simulation synthesis of naphthalene
  • 相关文献

参考文献13

  • 1Irvine D H. Efficient solution of nonlinear models expressed in S-system canonical form [ J ]. Mathematical and Computer Modelling, 1988, 11: 123-128.
  • 2Atkinson K. Elementary Numerical Analysis [M]. 2nd ed. New York:John Wiley & Sons, 1993.
  • 3Shiraishi F. Highly accurate solution of the axial dispersion model expressed in S-system canonical form by Taylor series method[J]. Chemical Engineering Journal, 2001, 83(3) : 175-183.
  • 4Sriyudthsak K, Shiraishi F. Investigation of the performance of fermentation processes using a mathematical model including effects of metabolic bottleneck and toxic product on cells [J]. Mathematical Biosciences, 2010, 228(1):1-9.
  • 5于志家,F Shiraishi.密封舱室内氧气再生过程的模拟计算[J].工程热物理学报,2005,26(5):808-810. 被引量:2
  • 6刘顺会,陶嫦立,黄贞仪,黄树林.利用S-系统方程模拟p53信号转导途径[J].生物医学工程学杂志,2010,27(3):505-510. 被引量:1
  • 7徐恭贤,冯恩民,邵诚,修志龙.色氨酸生物合成的稳态优化[J].工程数学学报,2005,22(6):975-982. 被引量:7
  • 8冯斌,余永红,孙俊.基于QPSO算法和S-系统的基因调控网络分析与重构[J].计算机应用研究,2010,27(9):3279-3282. 被引量:1
  • 9Savageau M A. Biochemical systems analysis, I. Some mathematical properties of the rate law for the component enzymatic reactions [J]. Journal of Theoretical Biology, 1969, 25(3) :365-369.
  • 10Marln-Sanguino A, biochemical systems Torres N V. Optimization of by linear programming and general mass action model representations [J].Mathematical Biosciences, 2003, 184(2) :187-200.

二级参考文献39

  • 1沈杉松,徐燕声,张星.催化裂解柴油中萘系物分布和分离的研究[J].兰化科技,1994,12(2):85-89. 被引量:3
  • 2马琳琳,孙文靖,傅松滨.p53基因网络王国[J].国外医学(遗传学分册),2005,28(1):15-20. 被引量:8
  • 3申建刚,张晓岚.肝星状细胞凋亡机制研究进展[J].国外医学(内科学分册),2006,33(10):432-435. 被引量:2
  • 4张骞骞,刘立新,韩德五.胰岛素样生长因子连接蛋白与肝脏疾病[J].山西医科大学学报,2007,38(2):178-181. 被引量:1
  • 5张东明.精馏与分步结晶结合提纯精萘的研究[J].化工进展,1997,(6):46-48.
  • 6SHINICHI K,DAISUKE T,MASANORI A,et al.Dynamic mode-ling of genetic networks using genetic algorithm and S-system[J].Bioinformatics,2003,19(5):643-650.
  • 7SHUHEI K,KAORI L,AIKO K,et al.Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm[J].Bioinformatics,2005,21(7):1154-1163.
  • 8TOMMAGA D,KOGA N,OKAMOTO M.Efficient numerical optimization algorithm based on genetic algorithm for inverse problem[C]//Proc of Genetic and Evolutionary Computation Conference.2000:251-258.
  • 9KIMURA S,KONAGAYA A.High dimensional function optimization using a new genetic local search suitable for parallel computers[C]//Proc of Conference on Systems.2003:335-342.
  • 10KIMURA S,HATAKEYAMA M,KONAGAYA A.Inference of S-system models of genetic networks using a genetic local search[C]//Proc of Congress on Evolutionary Computation.2003:631-638.

共引文献15

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部