期刊文献+

初始压力对爆轰波在管道内传播的影响 被引量:9

Effect of initial pressure on propagation of detonation wave in round tube
下载PDF
导出
摘要 建立爆轰管道研究不同初始压力下爆轰波在管道内传播规律.选用CH4+2O2气体,采用光纤探针测量爆轰波在管道内的传播速度,采用烟迹法记录爆轰波胞格结构.结果表明:爆轰波在管道内传播时出现5种不同传播模式,分别为稳态式、快速波动式、结巴式、驰振式与失效模式.在稳态传播模式下,爆轰波局部速度波动很小且平均速度接近理论爆轰CJ速度,并呈现多头胞格结构.随着初始压力的降低,爆轰波局部速度波动增加且其平均速度产生衰减.在驰振式爆轰解耦处,爆轰波胞格结构消失,过载爆轰时,重新形成胞格结构.进一步降低初始压力至爆轰失效时,则无胞格结构. Detonation tube was built to investigate the effect of initial pressure on the propagation of detonation wave in round tube.The premixed gas of CH4+2O2 was selected as experimental gas. Optical fiber probe was used to measure the local velocity of detonation wave.Smoked foils were used to register the cellular structure of detonation wave in tubes.The experimental results show that there are five distinct modes during the propagation of detonation wave in tubes,which are stable mode,rapid fluctuation mode,stuttering mode,galloping mode and failure mode.Under the mode of stable detonation,the fluctuations of the local velocity of detonation wave are generally small and the averaged velocity of detonation wave is close to the theoretical CJ value.The detonation wave has multi-headed cellular structure.With decreasing of the initial pressure,the fluctuations of the local velocity of detonation wave increase,and the averaged velocity of detonation wave decreases.For the galloping detonation,at the decoupled position,cellular structure disappears.Cellular structure forms again when overdriven detonation occurs.If the initial pressure is further decreased till the detonation failure,no cellular structure is observed.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2014年第4期413-417,共5页 Journal of Dalian University of Technology
基金 辽宁省科学技术计划资助项目(2012231008)
关键词 爆轰波 初始压力 爆轰速度 胞格结构 detonation wave initial pressure detonation velocity cellular structure
  • 相关文献

参考文献17

  • 1Lee J J, Dupre G, Knystautas R, et al. Doppler interferometry study of unstable detonations [J]. Shock Waves, 1995, 5(3):175-18.
  • 2Camargo A, Ng H D, Chao J, etal. Propagation of near-limit gaseous detonations in small diameter tubes [J]. Shock Waves, 2010, 20(6) :499-508.
  • 3Moen I O, Sulmistras A, Thomas G O, et al. The influence of cellular regularity on the behavior of gaseous detonations [M]//Leyer J-C, Soloukhin R I, Bowen J R. Progress in Astronautics and Aeronautics: Dynamics of Explosions. Reston: American Institute of Aeronautics and Astronautics, 1985 : 220-243.
  • 4Lee J H S, Jesuthasan A, Ng H D. Near limit behavior of the detonation velocity [J]. Proceedings of the Combustion Institute, 2013, 34(2): 1957- 1963.
  • 5Kitano S, Fukao M, Susa A, et al. Spinning detonation and velocity deficit in small diameter tubes [J]. Proceedings of the Combustion Institute, 2009, 32(2) : 2355-2362.
  • 6Campbell C, Woodhead D W. The ignition of gases by an explosion-wave. Part L Carbon monoxide and hydrogen mixtures [J]. Journal of the Chemical Society, 1926, 129 : 3010-3021.
  • 7Campbell C, Woodhead D W. Striated photographic records of explosion-waves [J]. Journal of the Chemical Society, 1927 : 1572-1578.
  • 8Campbell C, Finch A C. Striated photographic records of explosion waves. Part II. An explanation of the striae [J]. Journal of the Chemical Society, 1928 : 2094-2106.
  • 9Manson N, Brochet C, Brossard J, et al. Vibratory phenomena and instability of stir-sustained detonations in gases [J]. Symposium(International) on Combustion, 1963, 9(1) :461-469.
  • 10Edwards D H, Hooper G, Morgan J M. A study of unstable detonations using a microwave interferometer [J]. Journal of Physics D: Applied Physics, 1974, 7(2) :242-247.

同被引文献83

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部