期刊文献+

基于声发射信号的铣刀运行可靠性评估 被引量:9

Estimation of operational reliability for milling cutter based on acoustic emission signal
下载PDF
导出
摘要 研究了基于声发射方法的Logistic回归模型的铣削过程中刀具可靠性评估.从试验数据分析得出铣削过程的声发射信号和切削力信号,与刀具磨损量具有较强线性相关性,是刀具性能退化监测的有效方法.运用小波包分解提取声发射信号的能量,选取与刀具磨损相关的频带能量作为特征指标.将应用切削力和声发射两种监测方法建立的可靠性模型与仅用声发射监测的可靠性模型进行对比发现,两个模型都较为准确地评估出了刀具在铣削过程中的可靠度指标,而基于声发射可靠性评估模型更为方便,在实际切削力不易获得的情况下,运用此方法能够进行刀具的可靠性评估与寿命预测. Logistic regression model for reliability evaluation based on acoustic emission monitoring for milling cutter is investigated.According to experimental data analyses,acoustic emission and cutting force signals have linear relationship with milling cutter wear.It is an effective method for milling cutter degradation estimation.Frequency band energy related with milling cutter wear is determined to be as characteristic vector for acoustic emission signal using wavelet packet decomposition.Two reliability estimation models are constructed based on cutting force and acoustic emission signals,one uses two kinds of signals,the other just uses acoustic emission signal.The reliability can be estimated using the two models.The model just using acoustic emission signal is more convenient to estimate reliability and predict life as it is difficult to monitor cutting force in the practical working conditions.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2014年第4期418-423,共6页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(51175057) 国家高档数控机床与基础制造装备科技重大专项资助项目(2013ZX04012071)
关键词 铣刀 刀具磨损 声发射 LOGISTIC回归模型 小波分析 可靠性 milling cutter tool wear acoustic emission Logistic regression model wavelet analysis reliability
  • 相关文献

参考文献8

  • 1丁锋,何正嘉,訾艳阳,陈雪锋,曹宏瑞,谭继勇.基于设备状态振动特征的比例故障率模型可靠性评估[J].机械工程学报,2009,45(12):89-94. 被引量:49
  • 2陈保家,陈雪峰,李兵,曹宏瑞,蔡改改,何正嘉.Logistic回归模型在机床刀具可靠性评估中的应用[J].机械工程学报,2011,47(18):158-164. 被引量:35
  • 3孙闯,何正嘉,张周锁,陈雪峰,曹宏瑞,宁喜钰,邹利民.基于状态信息的航空发动机运行可靠性评估[J].机械工程学报,2013,49(6):30-37. 被引量:52
  • 4LIAO Hai-tao, ZHAO Wen-biao, GUO Huai-rui. Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model [ C ] // Reliability and Maintainability Symposium, 2006. RAMS' 06. Annual. Piscataway:IEEE, 2006:127-1.
  • 5Caesarendra W, Widodo A, Yang B S. Application of relevance vector machine and logistic regression for machine degradation assessment [J]. Mechanical Systems and Signal Processing, 2010, 24(4) : 1161- 1171.
  • 6Agogino A, Goebel K. Mill Data Sett, BEST Lab, UC Berkeley. NASA Ames Prognostics Data Repository [DB/OL]. [2007-05-10]. http://ti. are. nasa. gov/prolect/prognostie-data-repository.
  • 7Huang S N, Tan K K, Wong Y S, etal. Tool wear detection and fault diagnosis based on cutting force monitoring [J]. International Journal of Machine Tools and Manufacture, 2007, 47(3):444-451.
  • 8李劲松,陈鼎昌.基于铣削力的刀具磨损监控研究[J].北京航空航天大学学报,1998,24(5):571-574. 被引量:10

二级参考文献53

  • 1黄洪钟.对常规可靠性理论的批判性评述——兼论模糊可靠性理论的产生、发展及应用前景[J].机械设计,1994,11(3):1-5. 被引量:42
  • 2刘晓东,李慧军,李劲松,陈鼎昌.基于切削力的铣削过程刀具破损监控[J].航空制造工程,1996(10):35-37. 被引量:1
  • 3JARDINE A K S, LIN D, BANJEVIC D. A review on machinery diagnostics and prognostics implementing condition-based maintenance[J]. Mechanical Systems and Signal Processing, 2006, 20(7): 1 483-1 510.
  • 4HESS S M, BITER W J, HOLLINGSWORTH S D. An evaluation method for application of cond/tion-based maintenance technologies[C]//IEEE Proceedings Annual Reliability and Maintainability Symposium, 2001: 240-245.
  • 5SARANGA H, KNEZEVIC J. Reliability prediction for condition-based maintained systems[J]. Reliability Engineering and System Safety, 2001, 71(2): 219-224.
  • 6LIAO Haitao, ZHAO Wenbiao, GUO Huairui. Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model[C]// IEEE Proceedings Annual Reliability and Maintainability Symposium, 2006: 127-132.
  • 7CHINNAM R B. On-line reliability estimation of individual components using degradation signal models[J]. IEEE Transactions on Reliability, 1999, 48(4): 403-412.
  • 8LU H, KOLARIK W J, LU S S. Real-time performance reliability rrediction[J]. IEEE Transactions on Reliability, 2001, 50(4): 353-357.
  • 9LU S S, LU H, KOLARIK W J. Multivariate performance reliability prediction in real-time[J]. Reliability Engineering and System Safety, 2001, 72 (1): 39-45.
  • 10LIN Changching, TSENG Hsienyu. A neural network application for reliability modeling and condition-based predictive maintenance[J]. The International Journal of Advanced Manufacturing Technology, 2005, 25(1): 174-179.

共引文献135

同被引文献71

引证文献9

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部