期刊文献+

褐铁矿颗粒低温CO磁化还原焙烧的实验研究与数值模拟 被引量:2

Experiment and Mathematical Simulation on Magnetization Reduction Roasting of Limonite Particles with CO at Low Temperature
原文传递
导出
摘要 在673~893 K低温条件下,用CO将褐铁矿颗粒中的Fe2O3还原为Fe3O4,提出基于一维球坐标下的还原模型,包括颗粒内的传热、传质方程及含变化孔隙的随机孔转化方程.通过实验与数值模拟,得到不同气体浓度、不同温度下颗粒还原度随时间的变化关系.结果表明,磁化焙烧还原过程受化学反应、气体内扩散及孔隙变化共同的影响,CO浓度为10%(mol)、孔隙率为0.5的100μm的褐铁矿颗粒在673 K下还原度为1时所需还原时间为15 min. The magnetization reduction roasting process of limonite particles in conversion of Fe203 into Fe304 with CO at low temperature (673-893 K) was studied by experiment and mathematical simulation. The established model included the heat transfer and mass transfer equations in the particles, and a changing pore of random pore reduction equation. By numerical simulation and experiment, the reduction degree data of limonite particles with time under different CO concentrations and temperatures were obtained. The results showed that the reduction process was controlled by chemical reaction, gas diffusion and particle pore changing. The limonite particles with the size of 100 p.m at the porosity of 0.5 and CO concentration of 10%(mol) were reduced within 15 min at 673 K when the reduction degree was 1.
出处 《过程工程学报》 CAS CSCD 北大核心 2014年第4期624-630,共7页 The Chinese Journal of Process Engineering
基金 内蒙古应用技术研究与开发基金资助项目(编号:20130310) 内蒙古高校创新团队研究计划资助项目(编号:NMGIRT1406) 白云鄂博矿多金属资源综合利用国家重点实验室基金资助项目(编号:BO-13-006)
关键词 褐铁矿颗粒 低温还原 磁化焙烧 热重 数值模拟 limonite particle low temperature reduction magnetization roasting thermogravimetry numerical simulation
  • 相关文献

参考文献24

  • 1谢路奔.结晶水含量对褐铁矿烧结性能的影响及分析[J].矿冶工程,2012,32(6):93-95. 被引量:12
  • 2韩磊,李解,李保卫,韩继铖,韩腾飞,杨仲禹.微波加热褐铁矿的脱水反应动力学[J].过程工程学报,2014,14(2):286-290. 被引量:5
  • 3Li C, Sun H H, Bai J, et al. Innovative Methodology for Comprehensive Utilization of Iron Ore Tailings: Part 1. The Recovery of Iron from Iron Ore Tailings Using Magnetic Separation after Magnetizing Roasting [J]. J. Hazard. Mater., 2010, 174(1): 71-77.
  • 4Bhatia S K, Perlmutter D D. A Random Pore Model for Fluid-Solid Reactions: II. Diffusion and Transport Effects [J]. AIChE J., 1981, 27(2): 247-254.
  • 5Heidebrecht P, Galvita V, Sundmacher K. An Alternative Method for Parameter Identification from Temperature Programmed Reduction (TPR) Data [J]. Chem. Eng. Sci., 2008, 63(19): 4776-4788.
  • 6Nasr M I, Omar A A, Khadr M H, et al. Analysis of Solid-state Reduction of Iron Ore from a Couple of Experimental Measurements [J]. Stand. J. Metall., 1994, 23(3): 119-125.
  • 7Srinivasan N S. Reduction of Iron Oxides by Carbon in a Circulating Fluidized Bed Reactor [J]. Powder Technol., 2002, 124(1): 28-39.
  • 8Et-Tabirou M, Dupre B, Gletizer C. Hematite Single Crystal Reduction into Magnetite with CO-CO2 [J]. Metall. Trans. B (Process Metallurgy), 1988, 19(2): 311-317.
  • 9Thurnhofer A, Schachinger M, Winter F, et al. Iron Ore Reduction in a Laboratory-scale Fluidized Bed Reactor-Effect of Pre-reduction on Final Reduction Degree [J]. ISIJ Int., 2005, 45(2): 151-158.
  • 10周建军,朱庆山,王化军,倪文.某鲕状赤褐铁矿流化床磁化焙烧-磁选工艺[J].过程工程学报,2009,9(2):307-313. 被引量:29

二级参考文献60

共引文献101

同被引文献8

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部