期刊文献+

颗粒粒度对Cu基载氧体反应性能的影响

Influence of Particle Size on the Performance of Cu-based Oxygen Carrier
原文传递
导出
摘要 基于化学链燃烧新流程,采用固定床反应器研究了Cu基载氧体粒度、作为活性组分的Cu粉粒度及作为惰性载体的γ-Al2O3粒度对载氧体反应性能的影响.结果表明,载氧体的还原率及氧化率随Cu粉粒度减小而增大,Cu粉平均粒度小于63μm时,载氧体还原率和氧化率达95%和93%以上.载氧体还原过程中有少量CH4生成,生成量随Cu粉粒度减小而减少,Cu粉平均粒度小于32μm时低于1%;当载氧体粒度接近γ-Al2O3粒度时,载氧体的性能明显降低,只有γ-Al2O3粒度明显小于载氧体粒度时,γ-Al2O3才能起到分散活性组分、抑制活性组分烧结的作用. Based on a new chemical looping combustion (CLC) process, the effects of sizes of oxygen carder particles, Cu powder and γ-Al2O3 powder on the performances of oxygen cartier were investigated in a fixed bed reactor. The results show that reduction and oxidation rates of oxygen carrier increase as the size of Cu powder decreases. For Cu powder with the mean size below 63μm, the reduction and oxidation rates of oxygen cartier reach above 95% and 93%, respectively. In the reduction step, a small amount of CH4 is generated, and it decreases as the size of Cu powder decreases. For Cu powder with the mean size below 32μm, the amount of CH4 is decreased to below 1%. When the size of oxygen cartier is close to the size of γ-Al2O3, the performances of oxygen carrier are significantly reduced. Only when the particle size of γ-Al2O3 is significantly smaller than the particle size of oxygen carrier, the γ-Al2O3 can effectively disperse the particles of active component, and then inhibit its sintering.
出处 《过程工程学报》 CAS CSCD 北大核心 2014年第4期631-636,共6页 The Chinese Journal of Process Engineering
基金 北京市科技基金资助项目(编号:Z131100005613045) 中央高校基本科研业务费专项基金资助项目(编号:FRF-SD-12-013A)
关键词 化学链燃烧 Cu基载氧体 粒度 Cu粉 γ-Al2O3粉 chemical looping combustion Cu-based oxygen carrier particle size Cu powder γ-Al2O3 powder
  • 相关文献

参考文献4

二级参考文献37

  • 1金红光,洪慧,王宝群,韩巍,林汝谋.化学能与物理能综合梯级利用原理[J].中国科学(E辑),2005,35(3):299-313. 被引量:53
  • 2蔡睿贤 金红光 林汝谋.21世纪100个交叉科学:能源动力系统与环境协调相容的难题[M].北京:科学出版社,2005.366-371.
  • 3Klaeyle M M S, Laurent R, Nandjee F. New cycles for methanol-fuels gas turbines. ASME Paper 83-GT-60,1983.
  • 4Davies D G, Woodley N H, Foster-Pegg R W, et al. Improved combustion turbine efficiency with reformed alcohol fuels. ASME Paper 83-GT-60, 1983.
  • 5Cai R. Alcohol fuel gas turbines and its efficiency. Proceedings of the Eighth International Symposium on Alcohol Fuel, 1988.
  • 6Carapellucci R, Cau G, Cipollone R. Capabilities of the internal heat recovery for increasing the efficiency of gas turbine power plants. ASME Cogen-Turbo Power, Bournemouth, September, 1993.21-23.
  • 7Kesser K F, Hoffman M A, Baughn J W. Analysis of a basic chemically recuperated gas turbine power Plant. ASME J Engineering for Gas Turbines and Power, 1994, 116: 277-284.
  • 8Harvey Simon, Kane N^+ Diaye. Analysis of a gas turbine cycle with chemical recuperation using ASPEN.Proceedings of the Inter Conference ECOS 1996, STOCKHOLM, SWEDEN, 1996. 297-304.
  • 9Abdallah H, Facchini B. Part load performance of chemically recuperated gas turbine compared to other advanced cycle. ASME TURBO-EXPO'98 Conference, Stockholm, Sweden, 1998.
  • 10Okazaki K, Kishida T, Ogawa K, et al. Direct conversion from methane to methanol for high efficiency energy system with exergy regeneration. ECOS 1999, Tokyo, 1999. 300-305.

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部