期刊文献+

稻瘟病菌MoYpt5蛋白互作网络预测 被引量:1

The Prediction of Protein-protein Interaction Network of MoYpt5 in Magnaporthe oryzae
下载PDF
导出
摘要 稻瘟病菌(Magnaporthe oryzae)共有11个假定的Rab蛋白家族成员,本文选取了MoYpt51(MGG_06241)和MoYpt52(MGG_01185)进行了生物信息学分析。通过搜索多个大型蛋白互作数据库和文献,共得到数百个与核心蛋白互作的蛋白和互作对。利用信息处理技术和高效制图平台将这些蛋白互作对构建成互作网络,得到若干个具有生物学意义的模块。结果表明,筛选得到的互作蛋白中,有的参与了蛋白降解的泛素途径(MGG_04053等)、囊泡介导的蛋白胞内运输(MGG_01238等),有的在蛋白、染色体的组装和修饰等过程(MGG_03677等)起重要作用。大部分假定互作蛋白定位于细胞质和质膜上,为其与目标蛋白互作提供了空间可能性。 There are 11 putative members of Rab family in Magnaporthe oryzae. MoYpt51 (MGG_06241) and MoYpt52 (MGG_01185) were chosen to conduct analysis of their protein interaction network by bioinformatics. We acquired hundreds of proteins and interaction-partners which interact with the core protein by searching several large protein interaction databases and references, and got a few significantly biological modules on the base of the technology of bioinformatics analysis and the platform of highly effective charting. The results showed that some (MGG_04053, etc.) of the screened proteins involve in the ubiquitin pathway of protein degradation and the protein transportation processes introduced by vesicles in cells (MGG_01238, etc.), some (MGG_03677, etc.) play a crucial role in the assembling and modifying processes of proteins and chromosomes. Most of the interaction proteins are localized in the cytoplasm and on the cell membrane which generate a spatial possibility of interacting with targeting proteins.
出处 《热带作物学报》 CSCD 北大核心 2014年第8期1597-1604,共8页 Chinese Journal of Tropical Crops
基金 国家自然科学基金项目(No.31070124) 福建省教育厅重点项目(No.JA10098)
关键词 稻瘟病菌 MoYpt5蛋白 蛋白互作网络 Magnaporthe oryzae MoYpt5 protein Protein-protein interaction network
  • 相关文献

参考文献19

  • 1Liu J, Wang X, Mitchell T, et ol. Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction[J]. Mol Plant Pathol, 2010, 11(3): 419-427.
  • 2Chiariello M, Bruni C B, Bucci C. The small GTPases Rab5a, Rab5b and Rab5c are differentially phosphorylated in vitro[J]. Federation of European Biochemical Societies, 1999, 453: 20-24.
  • 3Lachmann J, Barr F A, Ungermann C. The Msb3flY, yp3 GAP controls the activity of the Rab GTPases Vps21 and Ypt7 at endosomes and vacuoles [J]. Molecular Biology of the Cell, 2012, 23 (13): 2516-2526.
  • 4Nielsen E, Severin F, Backer J M, etal. Rab5 regulates motilityof early endosomes on microtubules[J]. Nature Cell Biology, 19991, 1 : 376-382.
  • 5Barbieri M A, Fernandez-Pol S, Hunker C, et al. Role of Rab5 in EGF receptor-mediated signal transduction[J]. Eur J Cell Biol, 2004, 83: 305-314.
  • 6Nakaya M, Tanaka M, Okabe Y, et al. Opposite effects of rho family GTPases on engulfment of apoptofic cells by macmphages[J]. Jour of Bio Chem, 2006, 281(13): 8 836-8 842.
  • 7Horazdovsky B F, Busehl G R, Emr S D. VPS21 encodes a rab5-1ike GTPbinding protein that is required for the sorting ofyeast vacuolar proteins[J]. The EMBO Journal, 1994, 13(6): 1 297-1 309.
  • 8Gerrard S R, Bryant N J, Stevens T H. VPS21 controls entry of endocytosed and biosynthetic proteins into the yeast prevaeuolar compartment[J]. Molecular Biology of the Cell, 2000, 11: 613-626.
  • 9Anrtrong J, Craighead M W, Watson R, et aL Schizosoccluomyces pombe ypt5: A homologue of the rab5 endosome fusion regulator[J]. Molecular Biology of the Cell, 1993, 4: 583-592.
  • 10Tsukamoto Y, Katayama C, Shinohara M, et al. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast[J]. Biochemical and Biophysical Research Communications, 2013, 441 : 867-872.

二级参考文献48

  • 1Albert-LaszloBarabasi,EeicBonabeau,何毓嵩,曾少立.无尺度网络[J].科学(中文版),2003(7):44-53. 被引量:8
  • 2曹建平,马义才,李亦学,石铁流.计算方法在蛋白质相互作用研究中的应用[J].生命科学,2005,17(1):82-87. 被引量:3
  • 3曾岚,徐晋麟,李亦学,石铁流.大规模蛋白质功能预测方法的进展[J].生命的化学,2005,25(1):4-7. 被引量:1
  • 4孙景春,徐晋麟,李亦学,石铁流.大规模蛋白质相互作用数据的分析与应用[J].科学通报,2005,50(19):2055-2060. 被引量:11
  • 5Shoemaker B A, Panchenko A R. Deciphering protein-protein interactions. Part Ⅰ. Experimental techniques and databases. PLoS Comput Biol, 2007, 3 (3): e42
  • 6Shoemaker B A, Panchenko A R. Deciphering protein-protein interactions. Part Ⅱ. Computational methods to predict protein and domain interaction partners. PLoS Comput Biol, 2007, 3(4): e43
  • 7Deng M, Mehta S, Sun F, et al. Inferring domain-domain interactions from protein-protein interactions. Genome Res, 2002, 12(10): 1540-1548
  • 8Lee H, Deng M, Sun F, et al. An integrated approach to the prediction of domain-domain interactions. BMC Bioinformatics, 2006, 7:269
  • 9Ng S K, Zhang Z, Tan S H. Integrative approach for computationally inferring protein domain interactions. Bioinformatics, 2003, 19(8): 923 -929
  • 10Pagel P, Wong P, Frishman D. A domain interaction map based on phylogenetic profiling. J Mol Biol, 2004, 344(5): 1331 -1346

共引文献3

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部