期刊文献+

测地自旋图:三维物体局部形状描述符

Geodesic-spin-image:local shape descriptor of 3D object
下载PDF
导出
摘要 针对自旋图中欧氏测量存在歧义、形状信息存在丢失的现象,提出一种新的三维物体表面局部形状描述符:测地自旋图(Geodesic-spin-image,GSI)。GSI采用测地距离取代欧氏距离限定局部支持区域;GSI在自旋图的基础上,还引入了3个新的特征,以补偿自旋图在方位角上的信息丢失。这3个特征为:局部支持区域在描述点切平面上投影的长轴长度、短轴长度,以及局部支持区域形心到描述点切平面的距离。基于GSI描述改进了现有自旋图匹配算法,首先基于3个新特征进行粗略匹配,而后基于测地支持区域内的自旋图进行精确匹配,以提高识别效率。仿真实验结果表明:相比于标准自旋图方法,该方法提供的物体局部形状信息更丰富,具有更高的目标分辨能力和匹配识别效率。 Geodesic-spin-image (GSI), a new three-dimensional(3D) local shape descriptor, was proposed to solve the problems of ambiguous Euclidean measure and insufficient shape information description when utilizing the Spin Image (SI) descriptor. The local support region of GSI was defined by Geodesic measure instead of Euclidean measure. Besides, three new features were also introduced to compensate the azimuth information loss while these features were long axis length and short axis length of the support region's projection onto the tangent plane of the given point, and the distance from the centroid of the support region to the tangent plane. Based on the GSI, matching strategy of SI was modified through a combination of coarse matching utilizing the three new features and fine matching utilizing SI defined by geodesic measure, so as to improve the matching efficiency. Simulation experiment results show that compared with the original SI method, the proposed GSI descriptor is proved to provide more shape information and be more discriminative, and its matching strategy is more efficient.
出处 《红外与激光工程》 EI CSCD 北大核心 2014年第8期2709-2714,共6页 Infrared and Laser Engineering
关键词 三维目标识别 局部形状描述符 测地自旋图 3D object recognition local shape descriptor geodesic-spin-image
  • 相关文献

参考文献10

  • 1Johnson A E, Hebert M. Recognition objects by matching oriented points [C]//Proceedings of Computer Vision and Pattern Recognition, 1997:1-8.
  • 2Johnson A E, Hebert M. Using spin images for efficient object recognition in cluttered 3D scenes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5): 433-449.
  • 3Alexandru N Vasile, Richard M Marino. Pose-independent automatic target detection and recognition using 3D laserradar imagery[J]. Lincoln Laboratory Journal, 2005, 15(1): 61-78.
  • 4Dinh H Q, Kropac S. Multi-resolution spin-images [C]// Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006.
  • 5Assfalg J, Bertini M, Bimbo A, et al. Content-based retrival of 3-D objects using spin image signatures [J]. IEEE Transaction on Multimedia, 2007, 9(3): 589-599.
  • 6李世飞,王平,沈振康.旋转图像的三维相关不变性[J].红外与激光工程,2011,40(12):2528-2534. 被引量:3
  • 7刘瑶,马杰,赵季,田金文,熊凌.基于自旋图的三维自动目标识别[J].红外与激光工程,2012,41(2):543-548. 被引量:12
  • 8Zhang Z Y, Ong S H, Foong K. Improved spin images for 3D surface matching using signed angles [C]//1CIP, 2012: 537-540.
  • 9Fehr D, Cherian A, Sivalingam R, et al. Compact covariance descriptors in 3D point clouds for object recognition [C]// IEEE International Conference on Robotics and Automation, 2012: 1793-1798.
  • 10Sun Y, Paik J, Koschan A, et al. Point fingerprint: a new 3D object representation scheme [J]. IEEE Transactions on Systems Man and Cybernetics, 2003, 33(4): 712-717.

二级参考文献15

  • 1余德军,龚俊斌,马杰,田金文.激光成像雷达成像仿真技术研究[J].红外与激光工程,2006,35(z4):160-166. 被引量:15
  • 2Wood J. Invariant pattem recognition: a review [J]. Pattern Recognition, 1996, 29(1): 1-17.
  • 3Mikolajczyk K. Detection of local features invariant to affine transformations [D]. France: Grenoble Institute National Polytechnique de Grenoble, 2002.
  • 4Lowe D G. Object recognition from local scale-invariant features [C]//The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999: 1150-1157.
  • 5Sun Y, Abidi M A. Surface matching by 3d point's fingerprint [C]//Processings of the International Conference on Computer Vision, 2001: 263-269.
  • 6Johnson A E, Hebert M. Using spin images for efficient object recognition in cluttered 3D scenes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5): 433- 449.
  • 7Liu X, Peng X, Yin Y, et al. A coarse registration method of range image based on SIFT [C]//SPIE, 2007: 68330X.
  • 8Dinh H Q, Kropac S. Multi-resolution spin-images [C]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006: 863-870.
  • 9Johnson A E. Spin-images: a representation for 3-D surface Matching [D]. US: Carnegie Mellon University, 1997.
  • 10Campbell R J, Flynn P J. A survey of free-form object representation and recognition techniques [J]. Computer Vision and Image Understanding, 2001, 81(2): 166-210.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部