期刊文献+

基于改进蝙蝠算法的红外光谱特征选择 被引量:11

Feature selection of infrared spectrum based on improved bat algorithm
下载PDF
导出
摘要 特征选择是红外光谱定性与定量分析中的重要环节之一。为了解决传统特征选择方法可调参数多、收敛速度慢、精度低、易早熟等不足,对基本蝙蝠算法进行了离散化改进以适用于离散优化问题,同时结合Lévy飞行搜索策略,提出了一种新型的红外光谱特征选择算法。采用三个红外光谱数据集对提出的算法进行了验证,同时与遗传算法、模拟退火算法、无信息变量消除法等进行了比较分析。实验结果显示,该方法可以快速地搜索到全局最优值,能有效地提高波长选择的准确性和稳定性,被选择的波长物理、化学意义明确,采用选择的特征波段建立的定量模型优于用全谱建立的模型。同时,三个不同相态、不同光谱范围的数据集表明,所提出的算法具有较大的适用范围与实用价值。 Feature selection infrared spectrum. In order is an important part during the process to solve the disadvantage of traditional of qualitative and quantitative analysis of methods, such as multi-parameters, slow convergence, poor accuracy, prone to premature, etc., a novel feature selection algorithm was proposed, which combined the basic bat algorithm and L6vy flights search strategy. Meanwhile, due to the original version of bat algorithm was only suitbale for continuous problems, a binary version of bat algorithm was proposed. Three infrared spectrum datasets were used to check the performance of proposed method while the comparisons with traditional genetic algorithm, simulate anneal algorithm and uninformative variable elimination methods were also implemented. The experiment results show that, the proposed method can quickly find the global best combination of sub-intervals and improve the accuracy and stability of feature selection. More importantly, the selected wavenumbers have exactly physical meanings. Meanwhile, the generalized performance of the model established based on the selected wavenumbers was better than the whole spectral range. The tests on three different phases (solid, liquid and gas) and different spectral range indicated that, the proposed algorithm has a widely practical scope and value.
出处 《红外与激光工程》 EI CSCD 北大核心 2014年第8期2715-2721,共7页 Infrared and Laser Engineering
基金 国家自然科学基金科学仪器基础研究专款(61127015) 国家国际科技合作专项(2012DFA10680 2013DFR10150) 山西省青年科技研究基金(2013021028-1)
关键词 特征选择 蝙蝠算法 Lévy飞行 红外光谱 feature selection bat algorithm L6vy flights infrared spectrum
  • 相关文献

参考文献12

  • 1洪明坚,温泉,温志渝.一种基于蒙特卡罗方法的近红外波长选择算法[J].光学学报,2010,30(12):3637-3642. 被引量:12
  • 2秦玉华,丁香乾,宫会丽.高维特征选择方法在近红外光谱分类中的应用[J].红外与激光工程,2013,42(5):1355-1359. 被引量:18
  • 3郭腾霄,丁学全,董晓强,穆宁,黄启斌,李翠萍,温红宇.基于EMD的红外遥测光谱信号预处理新方法[J].红外与激光工程,2013,42(12):3196-3200. 被引量:6
  • 4Zou Xiaobo, Zhao Jiewen, Povey M J W, et al. Variables selection methods in near-infrared spectroscopy[J]. Analytica Chimica Acta, 2010, 667: 14-32.
  • 5Liu Fei, Jiang Yihong, He Yong. Variable selection in visible/ near infrared spectra for linear and nonlinear calibrations: a case study to determine soluble solids content of beer [J], Analytica Chimica Acta, 2009, 635(1): 45-52.
  • 6Cai Wensheng, Li Yankun, Shao Xueguang. A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra [J]. Chemometrics and Intelligent Laboratory Systems, 2008, 90 (2): 188-194.
  • 7Givianrad M H, Saber-Tehrani M, Zarin S. Genetic algorithm- based wavelength selection in multicomponent spectrophotometrie determinations by partial least square regression: application to a sulfamethoxazole and trimethoprim mixture in bovine milk [J]. Journal of The Serbian Chemical Society, 2013, 78(4): 555-564.
  • 8Cramer J A, Kramer K E, Johnson K J, et al. Automated wavelength selection for spectroscopic fuel models by symmetrically contracting repeated unmoving window partial least squares [J]. Chemometrics and Intelligent Laboratory Systems, 2008, 92: 13-21.
  • 9Yang Xinshe. A new metaheuristic bat-inspired algorithm [J]. Nature Inspired Cooperative Strategies for Optimization, 2010, 284: 65-74.
  • 10刘长平,叶春明.具有Lévy飞行特征的蝙蝠算法[J].智能系统学报,2013,8(3):240-246. 被引量:74

二级参考文献63

共引文献104

同被引文献79

引证文献11

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部