期刊文献+

改进BRISK特征的快速图像配准算法 被引量:28

Fast image registration approach based on improved BRISK
下载PDF
导出
摘要 为了实现超分辨率图像重建中高精度快速图像配准,提出一种改进BRISK特征的快速图像配准算法。原有BRISK算法在特征提取和匹配过程中,忽视了角点分布信息,其匹配策略单一,导致误匹配率高。针对该问题,首先利用BRISK算法构建连续尺度空间,在此基础上对图像进行分块,然后利用图像区域显著性自适应选择角点检测阈值,获得均匀分布的角点,最后利用快速最近邻FLANN算法结合RANSAC的方法进行二值特征快速匹配。实验结果表明:改进的BRISK算法相比原算法在保持速度的基础上达到亚像素级配准精度,并具有优越的场景适应性能。 In order to realize accurate and fast image registration for super-resolution image reconstruction, a fast image registration approach based on improved BRISK feature was proposed. The BRISK algorithm neglected comer distribution information and the single matching strategy led to high false matching rate. To solve this problem, firstly, based on the original BRISK algorithm, a continuous scale space was built, and then the original image was divided into several blocks. After that, adaptive comer extraction thresholds were selected by the image saliency map to obtain uniform distribution of the comer points. Finally, the matching of binary features was carried out via FLANN algorithm and the RANSAC. The experimental results indicate that the improved BRISK algorithm enhance the accuracy of registration process up to sub-pixel compared with the original BRISK algorithm, with an advantage of scene adaptation, while nearly retaining its speed performance.
出处 《红外与激光工程》 EI CSCD 北大核心 2014年第8期2722-2727,共6页 Infrared and Laser Engineering
基金 中国科学院航空光学成像与测量重点实验室开放基金(Y2HC1SR) 吉林省重大科技攻关项目(11ZDGG001)
关键词 图像配准 BRISK特征 自适应阈值 快速二值特征匹配 image registration BRISK feature adaptive threshold fast binary feature matching
  • 相关文献

参考文献11

  • 1Lin Hui, Du Peijun, Zhao Weichang, et al. Image registration based on corner detection and affine transformation[C]//IEEE International Congress on Image and Signal Processing, 2010, 5: 2184-2188.
  • 2Calonder M, Lepetit V, Strecha C, et al. BRIEF: binary robust independent elementary features [C]//Proceedings of the European Conference on Computer Vision(ECCV), 2010: 778-792.
  • 3Rublee E, Rabaud V, Konolige K, et al. Orb: an efficient alternative to sift or surf [C]//Proc of IEEE International Conference on Computer Vision(ICCV), 2011: 2564-2571.
  • 4Leutenegger S, Chli M, Siegwart R. BRISK: binary robust invariant scalable keypoints [C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2011, 2548-2555.
  • 5Alexandre Alahi, Raphael Ortiz, Pierre Vandergheynst. FREAK: fast retina keypoint [C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2012: 16-21.
  • 6Elmar Mair, Hager Gregory D, Darius Burschka, et al.Adaptive and generic corner detection based on the accelerated segment test [C]//Proceedings of the European Conference on Computer Vision (ECCV), 2010, 6312: 183- 196.
  • 7Koch C, Poggio T. Predicting the visual world: silence is golden[J]. Nature Neuroscienee, 1999, 2(1): 9-10.
  • 8Erkan Bostanci, Nadia Kanwal, Clark Adrian F. Feature coverage for better homograph estimation : an application to image stitching [C]//Proceedings of the 19th International Conference on Systems, Signals and Image Processing (IWSSIP), 2012: 448-451.
  • 9Hou Xiaodi, Zhang Liqing. Saliency detection: a spectral residual approach [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2007: 1-8.
  • 10Muja M, Lowe D G. Fast approximate nearest neighbors with automatic algorithm configuration [C]//International Conference on Computer Vision Theory and Application (VISSAPP), 2009: 331-340.

同被引文献228

引证文献28

二级引证文献181

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部