期刊文献+

结合阈值去噪与边缘优化的图像增强算法 被引量:3

Image Enhancement Algorithm Combining with Threshold De-noising and Edge Optimization
下载PDF
导出
摘要 针对图像在传输过程中容易出现干扰的问题,该文通过研究图像的增强技术,通过对比分析,提出了一种结合阈值去噪与边缘优化的图像增强算法,该算法结合小波Contourlet变换与人眼的视觉固有特性,有效地对分解后的图像系数进行分类,并结合改进边缘优化算法的增益因子来优化边缘区信号;而非边缘区采用改进后的软阈值去噪算法进行去噪处理。经实验,该算法具有准确性高与去噪能力强的特性,能够在去噪的同时有效保护边缘信号,与预期目标相符,具有一定的实用价值。 Image is prone to interference problems in enhancement technology and comparative analysis, the transmission process. By studying the image an image enhancement algorithm is proposed combining with the threshold de-noising and edge optimization. The algorithm is based on the Wavelet Contourlet transform and the inherent characteristics of the human visual. The decomposed image coefficients are classified. The edge area signal is optimized by using the improved edges of the gain factor optimization algorithm. The non-edge of the area is de-noised by improved soft threshold de-noising algorithm. The experiments show the algorithm has the characteristics of high accuracy and de-noising ability, and it can effectively protect edge signal while de-noising. The experimental results are consistent with the expected target.
作者 叶仕通
出处 《图学学报》 CSCD 北大核心 2014年第4期571-576,共6页 Journal of Graphics
关键词 图像增强 小波Contourlet变换 人眼视觉 边缘优化算法 软阈值去噪算法 image enhancement wavelet Contourlet conversion human vision edge optimizationalgorithm soft threshold de-noising algorithm
  • 相关文献

参考文献10

  • 1Van Vliet L J,Young I T,Beckers G L.A nonlinear laplace operator as edge detector in noisy images[J].Computer Vision,Graphics,and Image Processing,1989,45(2):167-195.
  • 2Chen H O,Isa N.Quadrants dynamic histogram equalization for contrast enhancement[J].Consumer Electronics,IEEE Transactions on,2010,56(4):2552-2559.
  • 3Muranaka N,Kudoh S,Ashida T,Tokumaru M,Imanishi S.Multiple-valued image-contour extraction method using a Laplacian--Gaussian filter[J].Systems and Computers in Japan,2007,38(8):61-71.
  • 4Zavadsky V.Image approximation by rectangular wavelet transform[J].Journal of Mathematical Imaging and Vision,2007,27(2):129-138.
  • 5Zhang Zhihua,Saito N.Harmonic wavelet transform and image approximation[J].Journal of Mathematical Imaging and Vision,2010,38(1):14-34.
  • 6Zhang Qiang,Guo Baolong.Multifocus image fusion using the nonsubsampled contourlet transform[J].Signal Processing,2009,89(7):1334-1346.
  • 7Do M N,Vetterli M.The contourlet transform:an efficient directional multiresolution image representation[J].IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society,2005,14(12):2091-2106.
  • 8Do M N,Vetterli M.Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models[J].IEEE Transactions on Multimedia,2002,4(4):517-527.
  • 9Kim J T,Lee H J,Choi J S.Subband coding using human visual characteristics for image signals[J].IEEE Journal on Selected Areas in Communications,1993,11(1):59-64.
  • 10Liu Zhe,Xu Huanan.Image denoising with nonsubsampled wavelet-based contourlet transform[J].Fifth Intemational Conference on Fuzzy Systems and Knowledge Discovery,2008,1(10):301-305.

同被引文献26

  • 1Sattar F, Floreby L, Salomonsson G, et al. Image enhancement based on a nonlinear multiscale method [J]. IEEE Trans on Image Processing, 1997, 6(6): 888-895.
  • 2Rowley H A, Baluja S, Kanade T. Neural network-based face detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(1): 23-28.
  • 3孙海燕.基于小波分析小域特征融合的人脸识别算法研究[D].秦皇岛:燕山大学,2010.
  • 4Brinkman B H, Manduca A, Robb R A. Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction [J]. IEEE Transactions on Medical Imaging, 1998, 17(2): 161-171.
  • 5Hanmandlu M, Jha D. An optimal fuzzy system for color image enhancement [J]. IEEE Transactions on Image Processing, 2006, 15(10): 2956-2966.
  • 6Yamaguchi K, Itoh K. An algerbraic solution to independent component analysis [J]. Optics Communication, 2000, 178(10)- 59-64.
  • 7Petschnigg G, Szeliski R, Agrawala M, et al. Digital photography with flash and no-flash image pairs [J]. ACM Transactions on Graphics, 2004, 23(3): 664-672.
  • 8Tomasi C, Manduchi R. Bilateral filtering for gray and color images [C]//Proceedings of the 1998 IEEE International Conference on Computer Vision. Bombay, India,1998: 839-846.
  • 9Knaus C, Zwicker M. Dual-domain image denoising [C]// Proceedings of International Conference on Image Processing. Melbourne, Austrilia, 2013: 440-444.
  • 10Yu H, Zhao L, Wang H. Image denoising using trivariateshrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain [J]. IEEE Transactions on Image Processing, 2009, 18( 10): 2364-2369.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部