摘要
The preparation of supported Pd nanoparticles on Tris(tris(hydroxymethyl)aminomethane)‐ modi‐fied Si O2 gel and their catalytic application in Heck coupling are investigated. The catalyst was char‐acterized using a combination of X‐ray diffraction, transmission electron microscopy, field‐emission scanning electron microscopy, and scanning electron microscopy/energy‐dispersive X‐ray spec‐troscopy. The supported Pd nanoparticles were found to be a highly active and reusable catalyst for the Heck reaction at a low Pd loading(0.02 mol%) because of stabilization by the Tris moieties. Several reaction parameters, including the type and amount of solvent, base, and temperature, were evaluated. The heterogeneity of the catalytic system was investigated using different approaches, and showed that slight Pd leaching into the reaction solution occurred under the reaction condi‐tions. Despite this metal leaching, the catalyst can be reused seven times without significant loss of its activity.
The preparation of supported Pd nanoparticles on Tris (tris(hydroxymethyl)aminomethane)-modi-fied SiO2 gel and their catalytic application in Heck coupling are investigated. The catalyst was char-acterized using a combination of X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscopy, and scanning electron microscopy/energy-dispersive X-ray spec-troscopy. The supported Pd nanoparticles were found to be a highly active and reusable catalyst for the Heck reaction at a low Pd loading (0.02 mol%) because of stabilization by the Tris moieties. Several reaction parameters, including the type and amount of solvent, base, and temperature, were evaluated. The heterogeneity of the catalytic system was investigated using different approaches, and showed that slight Pd leaching into the reaction solution occurred under the reaction condi-tions. Despite this metal leaching, the catalyst can be reused seven times without significant loss of its activity.
出处
《催化学报》
SCIE
EI
CAS
CSCD
北大核心
2014年第9期1547-1554,共8页
基金
We gratefully acknowledge the funding support for this project from the Isfahan University of Technology, I. R. Iran. Further financial support from the Center of Excellence in Sensor and Green Chemistry Research, Isfahan University of Technology, is gratefully acknowledged.