摘要
首先通过添加数据得到了带有不完全信息随机截尾试验下泊松分布的完全数据似然函数,然后研究了变点位置和其它参数的满条件分布,接着利用Gibbs抽样与Metropolis-Hastings算法相结合的MCMC方法对参数进行了估计,最后进行了随机模拟,试验结果表明参数贝叶斯估计的精度较高.
This paper firstly obtained the complete-data likelihood function of Poisson distribution for IIRCT after adding data,then studied the full conditional distributions of change-point position and other parameters,and estimated the parameters by MCMC method of Gibbs sampling together with Metropolis-Hastings algorithm.Finally random simulation tests were conducted,and the results showed that Bayes estimations of the parameters were fairly accurate.
出处
《安徽师范大学学报(自然科学版)》
CAS
北大核心
2014年第4期335-338,342,共5页
Journal of Anhui Normal University(Natural Science)
基金
国家自然科学基金(61174099)
河南省教育厅自然科学基金资助项目(2011B110001)