期刊文献+

循“蝶形”解题

原文传递
导出
摘要 命题:如图1,四边形ABCD的对角线AC、BD相交于O点,如果S△AOB=S△DOC,则AD//BC.证明分别过A、D作AE⊥BC于E,DF⊥BC于F,则AE//DF.∵S△AOB=S△DOC,∴S△ABC=S△DCB.∴AE=DF,四边形AEFD是矩形.∴AD//BC.因为△AOB与△DOC犹如一只翩翩起舞的蝴蝶,所以我们称它为蝶形.这是一个基本图形,上述命题是蝶形的一个性质.蝶形常常出现或隐藏在一些几何图形之中。
作者 沈广毓
出处 《初中生必读》 2014年第9期31-32,共2页 Required Reading for Junior Middle School
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部