期刊文献+

基于不相交项并行列表技术的FPRM实现 被引量:6

FPRM Conversion Using Parallel Tabular Technique with Disjointed Products
下载PDF
导出
摘要 针对传统列表技术在逻辑函数从AND/OR形式转化成固定极性Reed-Muller(FPRM)过程中只能处理小规模电路的不足,该文提出一种基于不相交乘积项的并行列表技术。该技术能有效避免转化算法因逻辑函数输入变量增加引起最小项数量激增而导致效率低下甚至无法工作这种情况。另外,不同于已发表的用于实现大电路的转化算法,待处理的电路结构对该方法的性能影响很小。提出的算法用C语言编程实现,并用MCNC标准电路进行测试。实验结果表明所提算法可以对更大规模电路实现快速FPRM转换,并且算法速度对电路输入个数不敏感,但与待处理逻辑函数的不相交乘积项的数量有关。 With the deficiency of the published tabular techniques based algorithms which can only handle small functions in the conversion from AND/OR forms to the Fixed Polarity Reed-Mull (FPRM) forms, a novel parallel tabular technique using the disjoint products is proposed. By utilizing the disjointed products, the proposed algorithm is able to avoid the rapid increase of the minterms which leads the reported tabular technique based algorithms cannot run efficiently or even out of work. Furthermore, unlike the published algorithm for the large functions conversion, the circuit structure in progress has little effect on the performance of the proposed algorithm. The proposed algorithm is implemented in C language and tested under MCNC benchmarks. The experimental results show that the proposed algorithm can finish the polarity conversion fast for the larger circuits and the speed of the algorithm does not depend on the number of inputs of the circuits but the number of the disjointed products.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第9期2258-2264,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61131001 61228105) 浙江省自然科学基金(LY12F01014) 宁波市自然科学基金(2013A610009)资助课题
关键词 数字电路 Reed-Muller(RM)逻辑 固定极性 并行列表技术 逻辑优化 Digital circuit Reed-Muller (RM) logic Fixed polarity Parallel tabular technique Logic optimization
  • 相关文献

参考文献15

  • 1Almaini A E A, Thomson P, and Hanson D. Tabular techniques for Reed-Muller logic[J]. International Journal of Electronics Theoretical and Experimental,1991, 70(1): 23-34.
  • 2Lozano C C, Falkowski B J, and Luba T. Fixed polarity linearly independent expansions for the representation of quaternary functions[J]. Multiple-Valued Logic and Soft Computing, 2012, 19(4): 307-324.
  • 3Castro J. Recent advances in optimization techniques for statistical tabular data protection[J]. European Journal of Operational Research, 2012, 216(2): 257-269.
  • 4A1 Jassani B A, Urquhart N, and Almaini A E A. Manipulation and optimisation techniques for Boolean logic [J]. IET Computers & Digital Techniques, 2010, 4(3): 227-239.
  • 5杨萌,徐红英,Almaini A E A.针对混合极性的并行表格技术的遗传算法[J].计算机辅助设计与图形学学报,2011,23(11):1938-1943. 被引量:7
  • 6汪迪生,汪鹏君,孙飞,俞海珍.包含无关项逻辑函数的固定极性转换[J].电路与系统学报,2013,18(1):117-121. 被引量:3
  • 7Wang Lingli and Almani A E A. Faust conversion algorithm for very large Boolean functions[J]. Electronics Letters, 2000, 36(16): 1370-1371.
  • 8卜登立,江建慧.基于混合多值离散粒子群优化的混合极性Reed-Muller最小化算法[J].电子与信息学报,2013,35(2):361-367. 被引量:11
  • 9王伦耀,夏银水,陈偕雄.基于多数覆盖的二级MPRM函数逻辑优化[J].电子与信息学报,2012,34(4):986-991. 被引量:6
  • 10Wang Xiang, Lu Ying, Zhang Yi, et al.. Probabilistic modeling during power estimation for mixed polarity Reed- Muller logic circuits[C]. IEEE International Conference on Green Computing and Communications, Beijing, China, 2013: 1414-1418.

二级参考文献44

  • 1夏银水,王伦耀,周宗刚,叶锡恩,胡建平,A E A Almaini.Novel Synthesis and Optimization of Multi-Level Mixed Polarity Reed-Muller Functions[J].Journal of Computer Science & Technology,2005,20(6):895-900. 被引量:8
  • 2万旭,唐金花,陈偕雄.基于K图的逻辑函数OC展开式在固定极性下的化简[J].浙江大学学报(理学版),2006,33(1):48-51. 被引量:3
  • 3Wang Pengjun,Chen Xiexiong.TABULAR TECHNIQUES FOR OR-COINCIDENCE LOGIC[J].Journal of Electronics(China),2006,23(2):269-273. 被引量:12
  • 4Sasao T. Easily testable realizations for generalized Reed Muller expressions [J]. IEEE Transactions on Computers, 1997, 46(6); 709-716.
  • 5Dill K M, Perkowski M A. Baldwinian learning utilizing genetic and heuristic algorithms for logic synthesis andminimization of incompletely specified data with generalized Reed-Muller (AND-EXOR) forms [J]. Journal of Systems Arehiteeture, 2001, 47(6): 477-489.
  • 6Habib M K. A new approach to generate fixed-polarity Reed-Muller expansions for completely and incompletelyspecified functions [J]. International Journal of Electronics, 2002, 89(11): 845-876.
  • 7Voudouris D, Sampson M, Papakonstantinou G. Exact ESCT minimization for functions of up to six input variables [J]. Integration, the VLSI Journal, 2008, 41(1) : 87-105.
  • 8Habib M K. Efficient and fast algorithm to generate minimal Reed-Muller exclusive-OR expansions with mixed polarity forcompletely and incompletely specified functions and its computer implementation [J]. Computers &Electrical Engineering, 1993, 19(3):193-211.
  • 9Becker B, Drechsler R. Exact minimisation of Kronecker expressions for symmetric function [J]. Computers and Digital Techniques, 1996, 143(6): 349-354.
  • 10Cheng J, Chen X, Faraj K M, et al. Expansion of logical function in the OR-coincidence system and the transformbetween it and maxterm expansion [J]. lEE Proceedings Computers and Digital Techniques, 2003, 150(6): 397-402.

共引文献22

同被引文献28

  • 1A1 Jassani B A, Urquhart N, Almaini A E A. Manipula- tion and optimisation techniques for Boolean logic [ J ]. lET Computers & Digital Techniques, 2010, 4(3) : 227 - 239.
  • 2MeKenzie L, Almaini A E A, Miller J F, et al. Optimi- zation of Reed - Muller logic funetlom [ J ]. International Journal of Electronics Theoretical and Experimental, 1993, 75(3): 451-466.
  • 3Lozano C C, Falkowski B J, Luba T. Fixed Polarity Line- ady Independent Expansions for the Representation ofQuaternary Functions [ J ]. Multlple - Valued Logic and Soft Computing, 2012, 19(4) : 307 -324.
  • 4Wang Xiang, Lu Ying, Zhang Yi, et al. Probabilistie modeling during power estimation for mixed polarity Reed - Muller logic circuits [ C ]. IEEE International Confer- enee on Green Computing and Communiea - tions, Bei- jing, China, 2013 : 1414 - 1418.
  • 5Jankovic D, Stankovie R S, Moraga C. Optimization of polynomial expressions by using the extended dual polari- ty [ J ]. Computers, IEEE Transactions on, 2009, 58 (12) : 1710 - 1725.
  • 6Wang L, Almani A E A. Fast conversion algorithm for very large Boolean functions [ J ]. Electronics letters,.
  • 7Yang M, Xu H, Almaini A E A. Optimization of mixed polarity Reed - Muller functions using genetic algorithm [ C ]//Computer Research and Development ( ICCRD), 2011 3rd International Conference on. IEEE, 2011, 3: 293 - 296.
  • 8Tan E C, Yang H. Fast tabular technique for fixed - po- larity Reed - Muller logic with inherent parallel proces- ses[J]. International journal of electronics, 1998, 85 (4) : 511 -520.
  • 9李辉,汪鹏君,王振海.混合极性列表技术及其在MPRM电路面积优化中的应用[J].计算机辅助设计与图形学学报,2011,23(3):527-533. 被引量:16
  • 10杨萌,徐红英,Almaini A E A.针对混合极性的并行表格技术的遗传算法[J].计算机辅助设计与图形学学报,2011,23(11):1938-1943. 被引量:7

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部