期刊文献+

改进的非局部FCM脑核磁共振图像分割与偏移场恢复耦合模型 被引量:6

Brain MRI Segmentation and Bias Correction Model Based on Improved FCM with Non-local Information
下载PDF
导出
摘要 核磁共振图像技术可用于对疾病的辅助诊断,然而受成像机制的影响往往图像中含有噪声以及偏移场,使得传统的模糊C均值(FCM)算法很难得到较好的分割结果.为此,提出一种基于FCM算法的分割与偏移场恢复耦合模型.首先将偏移场耦合到模型中,以降低灰度不均匀对分割的影响;其次将非局部信息融入模型中,使其在降低噪声影响的同时还能保持细长拓扑结构区域信息;最后引入隶属度正则项,以降低隶属度在过渡区域的影响,改善模型的分割效果.实验结果证明,文中模型对噪声具有较好的鲁棒性,并且在分割过程中能较好地恢复图像偏移场,得到较理想的分割结果及偏移场估计. The technology of magnetic resonance (MR) image can be used for auxiliary diagnoses of diseases. However, some image mechanisms often make images contaminated by noise or bias field, which makes the traditional fuzzy C means (FCM) algorithm difficult to obtain good segmentation results. For that, in the paper, we proposed a novel model based on FCM which combines segmentation and bias correction. Firstly, we take the bias field into the model to reduce the effect of intensity inhomogeneity; secondly, integrating the non-local information into the model can reduce the impact of noise as well as keep the image structures; finally, we introduce membership regular term to obtain crisp membership, so that the effect of membership at the transition area can be reduced, and the result of classification can be improved. Experimental results of the brain MR images show that the proposed method can reduce the impact of noise and bias field can be recovered in the process of segmentation, then obtain better segmentation results as well as the bias estimation in an accurate way.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第9期1412-1418,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金项目(61173072) 国家自然科学青年基金项目(61003209) 江苏省自然科学基金项(BK2011824)
关键词 核磁共振图像 模糊C均值 非局部信息 图像分割 偏移场 magnetic resonance image fuzzy C means (FCM) non-local spatial information imagesegmentation bias field
  • 相关文献

参考文献13

  • 1Guttman M A, Zerhouni E A, McVeigh E R. Analysis of cardiac function from MR images [J]. IEEE Computer Graphics and Applications, 1997, 17(1): 30-38.
  • 2Bezdek J C. Pattern recognition with fuzzy objective function algorithms [M]. Norwell: Kluwer Academic Publishers, 198l: 215-220.
  • 3Feng Zhao (1) add_zf1119@hotmail.com Licheng Jiao (1) Hanqiang Liu (1).Fuzzy c-means clustering with non local spatial information for noisy image segmentation[J].Frontiers of Computer Science,2011,5(1):45-56. 被引量:33
  • 4Zhao F, Jiao L C, Liu H Q, et al. A novel fuzzy clustering algorithm with non local adaptive spatial constraint for image segmentation [J]. Signal Processing, 2011, 91(4) : 988-999.
  • 5Pham D L, Prince J L. An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities [J]. Pattern Recognition Letters, 1999, 20 (1) : 57-68.
  • 6Li C M, Xu C Y, Anderson A W, et al. MRI tissue classification and bias field estimation based on coherent local intensity clustering: a unified energy minimization framework [M] //Lecture Notes in Computer Science. Heidelberg: Springer, 2009, 5636:288-299.
  • 7Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters [J].Journal of Cybernetics, 1974, 3(3): 32-57.
  • 8Zhu L, Chung F L, Wang S T. Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions [J]. IEEE Transactions on Systems, Man, and Cybernetics, Port B: Cybernetics, 2009, 39(3): 578-591.
  • 9Buades A, Coil B, Morel J M. A non-local algorithm for image denoising [C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. LosAlamitos: IEEE Computer Society Press, 200,5, 2:60-65.
  • 10张建伟,杨红,陈允杰,方林,詹天明.结合非局部信息的脑MR图像分割与偏移场恢复耦合模型[J].计算机辅助设计与图形学学报,2013,25(4):526-532. 被引量:4

二级参考文献30

  • 1Licw A W C, Yah H. An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation [J]. IEEE Trans on Medical Imaging, 2003, 22(19): 1063-1075.
  • 2Kim C, You B J, Jeong M H, et al. Color segmentation robust to brightness variations by using B-spline curve modeling [J]. Pattern Recognition, 2008, 41(1) : 22-37.
  • 3Jungke M, Seelen W V, Bielke G, et al. A system for the diagnostic use of tissue characterizing parameters in NMR-tomography [C] //Proc of Information Processing in Medical Imaging. Berlin: Springer, 1987:471-481.
  • 4Collewet G, Davenel A, Toussaint C, et al. Correction of intensity nonuniformity in spin-echo T1 weighted images[J]. Magnetic Resonance Imaging, 2002, 20(4):365-373.
  • 5Tincher M, Meyer C R, Gupta R, et al. Polynomial modeling and reduction of RF body coil spatial inhomogeneity in MRI [J]. IEEE Trans on Medical Imaging, 1993, 12(2): 361-365.
  • 6Cohen S M, DuBois R M, Zeineh M M. Rapid and effective correction of RF inhomogeneity for high field magnetic resonance imaging [J]. Human Brain Mapping, 2000, 10(4): 204- 211.
  • 7Vokurka E A, Thacker N A, Jackson A. A fast model independent melhod for automatic correction of intensity nonuniformity in MRI data[J]. Journal of MagneticResonance, 1999, 10(3):550-562.
  • 8Ashburner J, Friston K J. Voxel-based morphometry: The methods[J]. Neuroimage, 2000, 11(6): 805 821.
  • 9Wells W M I, Grimson W E L, Kikinis R. Adaptive segmentation of MRI data [J]. IEEE Trans on Medical Imaging, 1996, 15(4): 429-442.
  • 10Dulyakarn P, Rangsaseri Y. Fuzzy C Mecns clustering using spatial information with application to remote sensing[C] // Proc of the 22nd Asian Conf on Remote Sensing. Berlin: Springer, 2001:5-9.

共引文献38

同被引文献51

  • 1林瑶,田捷,张晓鹏.基于模糊连接度的FCM分割方法在医学图像分析中的应用[J].中国体视学与图像分析,2001,6(2):103-108. 被引量:17
  • 2张东波,王耀南.FCM聚类算法和粗糙集在医疗图像分割中的应用[J].仪器仪表学报,2006,27(12):1683-1687. 被引量:32
  • 3孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1073
  • 4Li J, Bioucas-Dias J M, Plaza A. Spectral-spatial hyperspectralimage segmentation using subspace multinomial logistic regressionand Markov random fields[J]. IEEE Transactions onGeoscience and Remote Sensing, 2012, 50(3): 809-823.
  • 5Ghamisi P, Couceiro M S, Fauvel M, et al. Intergration of segmentationtechniques for classification of hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2013,11(1): 342-346.
  • 6Dragut L, Csillik O, Eisank C, et al. Automated parameterizationfor multi-scale image segmentation on multiple layers[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2014,88:119-127.
  • 7Bonnet N, Cutrona J, Herbin M. A ‘no-threshold’ histogrambasedimage segmentation method[J]. Pattern Recognition,2002, 35(10): 2319-2322.
  • 8Navon E, Miller O, Averbuch A. Color image segmentationbased on adaptive local thresholds[J]. Image and Vision Computing,2005, 23(1): 69-85.
  • 9Arbelaez P, Maire M, Fowlkes C, et al. Contour detection andhierarchical image segmentation[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2010, 33(5): 898-916.
  • 10Wang X F, Min H, Zou L, et al. A novel level set method forimage segmentation by incorporating local statistical analysisand global similarity measurement[J]. Pattern Recognition, 2015,48(1): 189-204.

引证文献6

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部