期刊文献+

多目标学习的图像滤波电路函数级进化方法 被引量:3

A Multi-Objective Evolutionary Approach for Design of Image Filter at Function Level
下载PDF
导出
摘要 针对图像滤波的可硬件化和细节保留中存在的问题,提出一种多目标学习的图像滤波电路函数级进化设计方法.首先建立平均绝对误差最小和高误差点数量最少的多目标滤波学习模型,以函数级基因表达式为进化电路个体的表征;采用离线进化模式搜索近似目标的最优进化电路个体,并对该个体的基因表达式进行VHDL转换,再将转换的VHDL移植于可编程逻辑器件上实现滤波电路.与多种滤波方法在边缘保留、峰值信噪比-均方误差的比较结果表明,电路在细节和边缘保留上有较大的提高,视觉效果更好. In order to solve the problem of filter hardware and reservation details of the image, this paper proposes a multi-objective evolutionary approach for image filter at function-level. Firstly, the multi-objective optimization model for image filter to minimize the number of large noise pixels and mean absolute error is constructed, and then, gene expression is used as the representation of the image filter, and a two-step off-line search method is to evolve a near-optimal image filter. Finally, the best-evolved gene expression is translated to VHDL and the VHDL is load onto programmable logic device for implementing the image filter. In experiments, three different types of noise are loaded on various images for filter training. The evolved filter by our approach compares various filters, in terms of peak signal to noise ratio (PSNR), mean squared error (MSE) and the effect of filtering. The experimental results illustrated that the proposed multi-objective evolutionary filter is superior to previous filters.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第9期1487-1493,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家青年科学基金(61203218) 江苏省高校自然科学研究面上项目(13KJB520023) 苏州大学青年教师科研预研基金(SDY2013A16)
关键词 图像滤波电路 进化电路 峰值信噪比 函数级进化 多目标进化 基因表达式 image filter evolutionary circuit peak signal-to-noise ratio function-level evolution multi-objective evolution gene expression
  • 相关文献

参考文献14

  • 1Frost V S, Stiles J A, Josephine A, et al. A model for radar images and its application to adaptive digital filtering of multiplicative noise [J]. INEE Transactions on Pattern Analysis and Machine Intelligence, 1982, 4(2): 157-166.
  • 2Kuan D T, Sawchuk A A, Strand T C, et al. Adaptive noise smoothing filter for images with signal-dependent noise [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, 7(2): 165-177.
  • 3Lee J S. Digital image enhancement and noise filtering by use of local statistics [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, 2(2): 165-168.
  • 4Astola J, Haavisto P, Neuvo Y. Vector median filter [J]. Proceedings of the IEEE, 1990, 78(4) : 678-689.
  • 5Trahanias P E, Venetsanopoulos A N. Vector directional filters-a new class of multichannel image processing filters [J]. IEEE Transactions on Image Processing, 1993, 2(4):528-534.
  • 6Trahanias P E, Karakos D, Venetsanopoulos A N. Directional processing of color image: theory and experimental results [J]. IEEE Transactions on Image Processing, 1996, 5 (6) : 868-880.
  • 7Karakos D G, Tranias P E. Combining vector median and vector directional filters: the directional distance filters [C] // Proceedings of IEEE International Conference on Image Processing. Washington D C.- IEEE Computer Society Press, 1995, 1:171-174.
  • 8Lukac R. Adaptive vector median filtering [J]. Pattern Recognition Letters, 2003, 24(12) : 1889-1899.
  • 9Sekanina L, Salajka V, Vasicek Z. Two step evolution of polymorphic circuits for image multi filtering [C] // Proceedings of IEEE Congress on Evolutionary Computing. Los Alamitos: IEEE Computer Society Press, 2012:1-8.
  • 10Sekanina L. Image filter design with evolvable hardware [M] //Lecture Notes in Computer Science. Heidelberg; Springer, 2002, 2279:255-266.

二级参考文献16

  • 1谢方军,唐常杰,元昌安,左劼,陈安龙.基于基因表达式的演化硬件进化和优化算法[J].计算机辅助设计与图形学学报,2005,17(7):1415-1420. 被引量:11
  • 2彭京,唐常杰,李川,胡建军.M-GEP:基于多层染色体基因表达式编程的遗传进化算法[J].计算机学报,2005,28(9):1459-1466. 被引量:32
  • 3Torresen J. An evolvable hardware tutorial [M].//Lecture Notes in Computer Science. Heidelberg: Springer, 2004, 3203:821-830.
  • 4Koza J R. Genetic programming: on the programming of computers by means of natural selection [M]. Cambridge: MIT Press, 1992.
  • 5Ferreira C. Gene expression programming: a new adaptive algorithm for solving problems [J]. Complex Systems, 2001, 13(2) : 87-129.
  • 6Poli R. Parallel distributed genetic programming [D]. Birmingham: The University of Birmingham, 1996.
  • 7Miller J F, Job B. Principles in the evolutionary design of digital circuits Part 1 [J]. Journal of Genetic Programming and Evolvable Machines, 2000, 1(1/2): 7-35.
  • 8Miller J F, Thomson P. Cartesian genetic programming [C] // Proceedings of Europe Genetic Programming, Berlin;: Edinburgh, 2000:121-132.
  • 9Brameier M, Banzhaf W. Basic concepts of linear genetic programming [M]. //Linear Genetic Programming. New York: Springer, 2007:13-34.
  • 10Banzhaf W. Genotype-phenotype-mapping and neutral variation--A case study in genetic programming [M].//Lecture Notes in Computer Science. Heidelberg: Springer, 1994, 866: 322- 332.

共引文献6

同被引文献18

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部