期刊文献+

基于优化标签传播算法的社区发现方法研究 被引量:1

Community Detection Based on the Optimized Label Propagation Algorithm
下载PDF
导出
摘要 自动发现高质量的网络社区结构是当前社会网络分析研究中的热点方向之一。与现有一些网络社区结构发现算法相比,标签传播社区发现算法具有不需要指定社区数量与时间复杂度低的优点,但该算法随机排列待更新节点和随机选择候选标签的策略严重影响了算法的准确率和稳定性。为了降低标签传播算法中这两种随机性,本文提出了一种优化的标签传播算法。经在真实基准网和计算机生成网的测试表明该算法具有更好的有效性和稳定性后,我们将该算法应用在科学网博客中“图书馆、情报与文献学”领域用户的好友关系网上,有效地发现了该网络中的社区结构。 Detectinghigh quality community structure is ahot research spots in the social network. Compared with existing community detection algorithms, label propagation algorithm does not need to specify the number of community andhas low algorithm complexity. However,the random in arranging node update order and selecting candidate label affect the accuracy and stability of the algorithm seriously, hence, we put forward an optimization of label propagation algorithm based on improved stochastic strategy in this paper. The tests on real-world networks andsynthetic networks shows that our algorithm is validity and stability, then our algorithm was used on the social network of science bloggers in " library, information and bibliography" field,and it has found out thecommunities in the social network effectively.
出处 《情报学报》 CSSCI 北大核心 2014年第5期538-548,共11页 Journal of the China Society for Scientific and Technical Information
基金 国家社会科学基金重大项目“面向突发事件应急决策的快速响应情报体系研究”(13&ZD174) 国家社会科学基金项目“在线社交网络中基于用户的知识组织模式研究”(14BTQ033) 江苏省研究生科研创新计划项目“面向社会化媒体的社区发现及其应用研究”(CXZZ13_0228)的研究成果之一
关键词 社区发现 标签传播算法 社会网络分析 社区结构 community detection, labelpropagation algorithm,social network analysis, communitystructure
  • 相关文献

参考文献35

  • 1康旭彬,贾彩燕.一种改进的标签传播快速社区发现方法[J].合肥工业大学学报(自然科学版),2013,36(1):43-47. 被引量:9
  • 2He M, Leng M, Li F, et al. A Node Importance Based Label Propagation Approach for Community Detection [ M ]. In Knowledge Engineering and Management, Springer,2014 : 249-257.
  • 3Krebs V. A network of co-purcheased books about US politics [ OL ]. [ 2008-01-01 ]. http://www, orgnet. com/.
  • 4Brandes U,Delling D,Gaertler M, et al. On modularity clustering[ J]. Knowledge and Data Engineering, IEEE Transactions on,2008, 20(2) : 172-188.
  • 5Raghavan U N, Albert R,Kumara S. Near linear time algorithm to detect community structures in large-scale networks [ J ]. Physical Review E, 2007, 76(3): 036106.
  • 6Barber M J,Clark J W. Detecting network communities by propagating labels under constraints [ J ]. Physical Review E,2009, 80(2) : 026129.
  • 7Newman M E. Finding community structure in networks using the eigenvectors of matrices [ J ]. Physical Review E,2006, 74(3): 036104.
  • 8Girvan M, Newman M E. Community structure in social and biological networks [ J ]. Proceedings of the National Academy of Sciences,2002, 99(12): 7821-7826.
  • 9Zhu X,Ghabramani Z. Learning from labeled and unlabeled data with label propagation[ R]. Technical Report CMU- CALD-02-107, Carnegie Mellon University,2002.
  • 10Page L,Brin S, Motwani R,et al. The PageRank citation ranking: bringing order to the web [ R ]. Stanford InfoLab, 1999.

二级参考文献70

  • 1高琰,谷士文,唐琎.基于链接分析的Web社区发现技术的研究[J].计算机应用研究,2006,23(7):183-185. 被引量:17
  • 2Nardi B,Schiano D,Gumbrecht M,et al.Why we blog[J].Communications of the ACM,2004,47 (12):41-46.
  • 3Kumar R,Novak J,Raghavan P,et al.Structure and evolution of blogspace[J].Communication of the ACM,2004,47 (12):35-39.
  • 4Chin A,Chingnell M.Finding Evidence of Community from Blogging Co-citations:A Social Network Analytic Approach[C]// Proceeding of 3td IADIS International Conference Web Based Communities (WBC06).Spain,2006.
  • 5Michael C,Jennifer X.Mining communites and their relationship in blogs:A study of online hate groups[J].International Journal of Human-Computer Studies,2007,65 (1):57-70.
  • 6Furukawa T,Mstsuo Y,Ohmukai I.Social networks and reading behavior in the blogosphere[C]//International Conference on Weblogs and Social Media,Colorado,2007.
  • 7Cronin B.Progress in documentation:invisible colleges and information transfer,a review and commentary with particular reference to the social sciences[J].Journal of Documentation,1982,(38):212-236.
  • 8Price D J,de Solla.Little science,big science (and beyond)[M].New York:Columbia University press,1986.
  • 9Crawford S.Formal and informal communication among scientists in sleep research[J].Journal of the American Society for Information Science,1971,22(5):301-311.
  • 10Hiltz S R,Turoff M.The Network nation:human communication via computer[M].Cambridge:MIT Press,1993.

共引文献70

同被引文献43

  • 1宋明秋,张瑞雪.基于HTML树的网页结构相似度研究[J].情报学报,2011,30(2):160-165. 被引量:2
  • 2Berlingerio M,Pinelli F,Calabrese F. ABACUS: frequent pattern mining-based Community discovery in multidimensional networks [ J ]. Data Mining and Knowledge Discovery,2013,27 ( 3 ) :294-320.
  • 3Kwok J S H, Gao S. Knowledge sharing community in P2P network: a study of motivational perspective [ J]. Journal of Knowledge Management, 2004,8 ( 1 ) : 94-102.
  • 4White S, Smyth P. A spectral clustering approach to finding communities in graphs [ C ]//Proceedings of the 5th SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics: Philadelphia,2005 : 76 -84.
  • 5Belkin M, Niyogi P, Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering [ M ]//Thomas G. Dietterich Advances in Neural Information Processing Systems,Combridge, 2001:585-591.
  • 6Girvan M, Newman M E J. Community structure in social and biological networks [ C ]//Proceedings of National Academy of Science. National Academy of Sciences of the United States of America , USA. 2002, 9 (12): 7921-7826.
  • 7Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69 (6) :066-133.
  • 8Palla G,Derenyi I,Farkas I, et al. Uncovering the over- lapping community structures of complex networks in nature and society [ J ]. Nature, 2005, 435 ( 7043 ) : 814-818.
  • 9Shen H W,Cheng X Q,Cai K, et al. Detect overlapping and hierarchical community structure in networks [ J ]. Physica A, 2009, 388(8) : 1706-1712.
  • 10Ramaswamy L,Gedik B, Liu L. A distributed approach to node clustering in decentralized peer-to-peer networks [ J ]. IEEE Transactions on Parallel and Distributed Systems, 2005, 16(9) : 814-829.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部