摘要
张量主成分分析法(TPCA)用于人脸特征提取,克服了传统的基于统计特征的特征提取方法会破坏图像原始结构的问题;而源图像经过非下采样剪切波变换后得到了k个大小相同但尺度不同的带通图像,具有良好的时频分析特征。为了更好地提取人脸识别特征,提出了非下采样剪切波融合TPCA的人脸特征提取算法,该算法先对源图像进行非下采样剪切波变换得到4个子代图像,再对子代图像进行TPCA特征提取得到特征集,实现人脸的高效识别。实验结果表明,该算法明显优于原有的单一算法。
Compared with the PCA method, TPCA for face recognition has a higher recognition rate. The source images through non-subsampled shearlet transform can get band pass images that have better feature of image with the same size and different scale. In order to extract better general face features, this paper proposes an algorithm based on non-subsampled shearlet transform and TPCA. Non-subsampled shearlet transform is firstly used and then TPCA is used to extract the feature of subband images , and the efficient recognition of face images can be realized. Experiment results show that the recognition rate of the proposed algorithm is higher than the original algorithm.
出处
《微型机与应用》
2014年第16期34-36,共3页
Microcomputer & Its Applications
基金
国家自然基金(61105085)
关键词
非下采样剪切波变换
张量主成分分析
特征提取
人脸识别
non-subsampled shearlet transform
tensor principal component analysis(TPCA)
feature extraction
face recognition