期刊文献+

平面上加强的 Ros 不等式 被引量:4

On Strengthen Ros Inequality in the Plane
下载PDF
导出
摘要 利用傅里叶分析的方法得到了一个关于周期函数的积分不等式,进而得到了平面上Ros不等式的加强形式. An integral inequality has been established in this paper on periodic functions via Fourier analy-sis .Furthermore ,a strengthen Ros inequality has been obtained in the plane .
作者 马磊 曾春娜
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第8期23-25,共3页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金天元基金资助项目(11326073) 重庆市教委科学技术研究项目(KJ130614) 广东石油化工学院高州师范学院教育科学十二五规划项目(2013GSKT01)
关键词 Ros不等式 曲率 卵形线 傅里叶级数 Ros inequality curvature oval cure Fourier series
  • 相关文献

参考文献9

  • 1ZHOU Jia-zu. New Curvature Inequalities for Curves [J]. Inter J of Math comp Sci Appl, 2007, 1(1) : 145-147.
  • 2ZHOU Jia-zu, JIANG De-shuo, LIMing, et al. On Ros' Theorem for Hypersurfaces [J]. Acta Math Sinica, 2009, 52(6) : 1075-1084.
  • 3ESCUDERO C, REVENTOS A, SOLANES O. Focal Sets in Two-Dimensional Space Forms [J]. Pacific J Math, 2007, 233(2):309-320.
  • 4马磊,马芳,周家足.平面上非简单闭曲线的Bonnesen型不等式(英文)[J].西南师范大学学报(自然科学版),2011,36(3):45-47. 被引量:5
  • 5周传婷,周家足.关于平面Bonnesen型不等式与第2类完全椭圆积分的注记[J].西南大学学报(自然科学版),2011,33(4):145-147. 被引量:5
  • 6SANTALO L A. Integral Geometry and Geometric Probability [M]. Cambridge: Cambridge University Press, 2004.
  • 7GROEMER H. Geometric Applications of Fourier Series and Spherical Harmonics [M]. Cambridge: Cambridge Univer- sity Press, 1996.
  • 8任德麟.积分几何引论[M].上海:上海科技出版社,1988.
  • 9PAN Sheng-liang, YANG Juan-na. On a Non-Local Perimeter-Preserving Curve Evolution Problem for Convex Plane Curves[J]. Manuscripta mathematica, 2008, 127(4): 469-484.

二级参考文献25

  • 1欧增奇,唐春雷.一类半线性椭圆方程解的存在性(英文)[J].西南师范大学学报(自然科学版),2007,32(1):1-5. 被引量:16
  • 2王娟,唐春雷.关于一类渐近线性椭圆方程(英文)[J].西南大学学报(自然科学版),2007,29(6):8-13. 被引量:7
  • 3BURAGO Y D, ZALGALLER V A. Geometric Inequalities [M]. Berlin Heidelberg: Springer-Verlag, 1988.
  • 4SANTALO L A. Integral Geometry and Geometric Probability [M]. Indian: Addison-Wesley, 1976.
  • 5HSIUNG W Y. An Elementary Proof of the Isoperimetric Problem [J]. Chin Ann Math, 2002, 23(1): 7--12.
  • 6OSSERMAN R. The Isoperimetrie Inequality [J]. Bull Amer Math Soe, 1978, 84: 1182--1238.
  • 7OSSERMAN R. Bonnesen-Style Isoperimetric Inequality [J]. Amer Math Monthly, 1979, 86: 1--29.
  • 8ZHOU J Z. On Bonnesen-Type Inequalities [J]. Acta Math Sinica, 2007, 50(6): 1391--1402.
  • 9ZHOU J Z, ZHOU C T, MA F. Isoperimetric Deficit Upper Limit of a Planar Convex Set [J]. Rendiconti'Delcircolo Matematico Di Palermo Serie, 2009, 81: 363--367.
  • 10ZHOU J Z, CHEN F W. The Bonnesen-Type Inequalities in a Plane of Constant Curvature [J]. J Korean Math Soc, 2007, 44(6): 1363--1372.

共引文献13

同被引文献22

  • 1GREEN M , OSHER S. Steiner Polynomials, Wullf Flows, And Some New Isoperimetric inequalities for Convex Plane Curve[J]. AsianJ Math, 1999(3): 659--676.
  • 2ZHOU Jia-zu. Curvature Inequalities for Curves [J]. Inter J Comp Math Sci Appl, 2007, 1(2--4) : 145--147.
  • 3PAN Sheng liang, YANG Juan-na. On a Non-Local Perimeter-Preserving Curve Evolution Problem for Convex Plane Curves [J]- Manuscripta Math, 2008, 127(4).. 469--484.
  • 4任德麟著.积分几何学引论[M]. 上海科学技术出版社, 1988
  • 5SANTALL A.Integral Geometry and Geometric Probability. . 2004
  • 6Shengliang Pan,Juanna Yang.On a non-local perimeter-preserving curve evolution problem for convex plane curves[J]. manuscripta mathematica . 2008 (4)
  • 7Yu-Chu Lin,Dong-Ho Tsai.Application of Andrews and Green-Osher inequalities to nonlocal flow of convex plane curves. JOURNAL OF EVOLUTION EQUATIONS . 2012
  • 8Mark Green,Stanley Osher.Steiner polynomials, Wulff flows, and some new isoperimetric inequalities for convex plane curves. Asian Journal of Mathematics . 1999
  • 9KLARTAG B.Marginals of Geometric Inequalities. . 2007
  • 10SCHNEIDER R.Convex Bodies:The Brunn-Minkowski Theory. . 2014

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部