期刊文献+

基于K近邻非线性分类器的高光谱遥感数据分类研究 被引量:1

A Nonlinear K-Nearest Neighbor Classifier for Hyperspectral Remote Sensing Imagery Classification
下载PDF
导出
摘要 K近邻等传统分类算法在高光谱遥感影像数据上进行分类时,由于其高维度、非线性特点,分类效果会受到严重影响。本文利用核函数方法,融合K近邻分类算法与Isomap非线性降维算法,提出了一种新的K近邻非线性分类器。该分类器无需通过降维预处理,并具备处理非线性数据的能力。在实验中,通过交叉验证与参数验证证明该方法在高光谱遥感影像上的分类效果明显优于原始K近邻分类算法以及结合主成分分析法的K近邻分类法。 High dimensionality and nonlinearity are two main factors of Hyperspectral remote sensing data that will decrease the classification accuracy for most existing classification algorithms ,such as K-nearest neighbor (KNN). This paper proposed a new nonlinear KNN classifier, which fuses the original KNN algorithm and Isomap algorithm by Kernel trick. This classifier does not need explicitly dimensionality reduction but still has the ability to analyze the nonlinearity by taking advantage of the Isomap algorithm. By cross-validation and parameter analysis in the experiments with hyperspectral test data,this new method has been proven to out-perform the original KNN and KNN with PCA algorithm in Classification Accuracy.
作者 莫文通 周源
出处 《城市勘测》 2014年第4期16-19,共4页 Urban Geotechnical Investigation & Surveying
关键词 高光谱遥感 分类算法 K近邻算法 非线性分类器 hyperspectral remote sensing classification KNN nonlinearity
  • 相关文献

参考文献9

  • 1钟智,朱曼龙,张晨,黄樑昌.最近邻分类方法的研究[J].计算机科学与探索,2011,5(5):467-473. 被引量:18
  • 2Houle M E, Kriegel H P, Kroger P and et al. Can Shared- Neighbor Distances Defeat the Curse of Dimensionality? [ A]. Statistical and Scientific Database Management-SSD- BM ,2010:482 - 500.
  • 3Tenenbaum J B, de Silva V, Langford J C. A Global Geomet- ric Framework for Nonlinear Dimensionality Reduction [ J ]. Science, 2000 : 2319 - 2323.
  • 4Roweis S T,Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding [ J ]. Science ,2000,2323 - 2326.
  • 5杜培军,王小美,谭琨,夏俊士.利用流形学习进行高光谱遥感影像的降维与特征提取[J].武汉大学学报(信息科学版),2011,36(2):148-152. 被引量:40
  • 6刘行波,武小军,周源.利用流形技术的遥感高光谱图像边缘检测[J].城市勘测,2010(B06):94-96. 被引量:1
  • 7Xiong H. A Unified Framework for Kernelization: The Em- pirical Kernel Feature Space [ A ]. Chinese Conference on Pattern Recognition-CCPR ,2009.
  • 8Balasubramanian M, Schwartz E L,Tenenbaum J B and et al. The Isomap Algorithm and Topological Stability [ J ]. Sci- ence, 2002,7 a : 7.
  • 9Bengio Y,Paiement J,Vincent P and et al. Out-of-Sample Ex- tensions for LLE,Isomap,MDS,Eigenmaps,and Spectral Cluste- ring[A]. Neural Information Processing Systems-NIPS,2003.

二级参考文献32

  • 1C. Bachmann, and T. L. Ainsworth, "Bathymetric retrieval from manifold coordinate representations of hyperspeetral imagery," Geoscience and Remote Sensing Symposium, pp. 1548 - 1551 ,Jul 1,2007.
  • 2C. Bachmann,T. L. Ainsworth,and R. A. Fusina,"Model- ing data manifold geometry in hyperspectral imagery," Geoscience and Remote Sensing Symposium,Jan 1,2004.
  • 3B. Wu,Y. Zhou, L. Yan et al. ,"Object Detection from HS/MS and Multi-platform Remote Sensing Imagery by Integration of Biologically and Geometrically Inspired Approaches," Proceedings of ASPRS 2009 Annual Conference, Baltimore, Maryland, 2009.
  • 4J. Canny, "A Computational Approach to Edge Detection," Pattern Analysis and Machine Intelligence, IEEE Transactions on,vol. PAMI-8,no. 6,pp. 679-698,Nov 1,1986.
  • 5B. Datt,T. R. McVicar,T. G. Van Niel et al.,"Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes," IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 6, Part 1, pp. 1246 - 1259 ,Jun 2,2003.
  • 6T. Han, and D. G. Goodenough, "Nonlinear feature extraction of hyperspectral data based on locally linear embedding (LLE) , " Geoscience and Remote Sensing Symposium, vol. 2,pp. 1237 -1240,Jul 1,2005.
  • 7Z. Zhang, "Principal Manifolds And Nonlinear Dimension Reduction Via Local Tangent Space Alignment," Nov 21,2002.
  • 8Hughes G F. On the Mean Accuracy of Statistical Pattern Recognition[J]. IEEE Trans Inf Theory, 1968, IT-14(1):55-63.
  • 9Kumar S, Ghosh J, Crawford M M. Best-Bases Feature Extraction Algorithms for Classification of Hyperspeetral Data [J]. IEEE Trans Geosci and Rem Sens, 2001, 39(7): 1 368-1 379.
  • 10Hsu P H. Feature Extraction of Hyperspectral Ima- ges Using Wavelet and Matching Pursuit [J]. IS- PRS Journal of Photogrammetry & Remote Sens- ing, 2007,62:78-92.

共引文献56

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部