期刊文献+

偏微分方程性质对大坝安全监控的意义 被引量:1

The Significance of Partial Differential Equation on Dam Safety Monitoring
下载PDF
导出
摘要 为夯实大坝安全监控理论基础,采用理论分析的方法,以典型二阶线性偏微分方程解的极值原理、解的存在唯一性和稳定性、影响区域以及时间反演对称性等性质为例,给出了偏微分方程性质在大坝安全监控包括测值分析、监控仪器布置、仪器量程选择和误差估计等方面的理论指导作用。分析结果表明熟悉偏微分方程的性质对提高大坝安全监控理论水平具有重要意义。 In order to reinforce the basic theory of dam safety monitoring ,taking the solution properties of typical second order linear partial differential equation as an example ,maximum principle ,uniqueness and stability of the solutions ,affected region and time-reversal symmetry ,were analysed to provide theoretical guidance on dam safety monitoring including measured value analysis ,monitoring instruments arrangement ,instruments range selection ,and error estimate ,etc . The analysis results show that the familiarity with partial differential equation plays an important role in improving the theoretical level of dam safety monitoring .
作者 方卫华
出处 《水利与建筑工程学报》 2014年第4期88-93,共6页 Journal of Water Resources and Architectural Engineering
基金 中央级公益性科研院所基本科研业务经费面上项目(Y913012) 科技部农业科技成果转化资金项目(2013GB23320631) 南京水利水文自动化研究所科研项目(ZL081108)
关键词 偏微分方程 大坝安全监控 模型建立 误差估计 partial differential equation dam safety monitoring modeling error estimate
  • 相关文献

参考文献16

  • 1方卫华.大坝安全监控:问题,观点与方法[M].南京:河海大学出版社,2013.
  • 2谷超豪,李大潜,陈恕行,等.数学物理方程(第二版)[M].北京:高等教育出版社,1996.
  • 3彭华,陈胜宏.饱和—非饱和岩土非稳定渗流有限元分析研究[J].水动力学研究与进展(A辑),2002,17(2):253-259. 被引量:39
  • 4盛金昌,速宝玉,王媛,詹美礼.裂隙岩体渗流-弹塑性应力耦合分析[J].岩石力学与工程学报,2000,19(3):304-309. 被引量:33
  • 5Sheng D. Review of fundamental principles in modeling un- saturated soil behavior [ J]. Computers and Geotechnics, 2011,38(6) :757-776.
  • 6Lloret A, Alonso E E. Consolidation of unsaturated soils in- cluding swelling and collapse behavior [ J ]. G6otechnique, 1980,30(4) :449-477.
  • 7Chang C S, Duncan J M. Consolidation analysis for partly saturated clay by using an elastic-plastic effective stress-strainmodel[J]. International Journal for Numerical and Analytical Methods Geomechanics, 1983,7( 1 ) : 39-55.
  • 8Huang S, Barbour S L, Fredlund D G. Development and verification of a coefficient of permeability function for a de- formable unsaturated soil[J]. Canadian Geotechnical Journal, 1998,35(3) :411-425.
  • 9徐芝纶.弹性力学(第二版)[M].北京:高等教育出版社,1987.289-294.
  • 10Wu W, Li X, Charier R, et al. A thermo-hydro-mechanical constitutive model and its numerical modelling for unsaturat- ed soils[J]. Computers and Geotechnics, 2004,31(2) : 155- 167.

二级参考文献87

  • 1朱学愚,谢春红,钱孝星.非饱和流动问题的SUPG有限元数值解法[J].水利学报,1994,26(6):37-42. 被引量:21
  • 2黄康乐.求解非饱和土壤水流问题的一种数值方法[J].水利学报,1987,(9):9-16.
  • 3高骥 雷光辉 等.堤坝饱和非饱和渗流的数值分析[J].岩土工程学报,1988,(6).
  • 4雷志栋 等.土壤水动力学[M].北京:清华大学出版社,1998.34-44.
  • 5FREDLUND D G RAHARDIO H.非饱和土土力学[M].北京:中国建筑工业出版社,1997..
  • 6Courant R, Friedrichs K O. Supersonic Flow and Shock Waves. New York: Interscience, 1948.
  • 7Lax P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm Pure Appl Math, 1954, 7:139-193.
  • 8Lax P D. Hyperbolic systems of conservation laws. Comm Pure Appl Math, 1957, 10:537-566.
  • 9Oleinik O. Discontinuous solutions of nonlinear differential equations. Uspekhi Mat Nauk, 1957, 12:3-73.
  • 10Lax P D. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Philadelphia: SIAM, 1973.

共引文献73

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部