期刊文献+

CRISPR/Cas基因组靶向编辑技术综述 被引量:3

Review about CRISPR/Cas system as a new targeted genome editing technology
下载PDF
导出
摘要 Clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated(Cas)是细菌特有的一种获得性免疫系统,研究人员将其改造成为靶向基因组编辑的工具,由于操作简单、成功率高且效率高,成为了靶向基因组编辑工具中的佼佼者。同时CRISPR/Cas系统也被改造作为一种极为有效的位点特异性的转录抑制/激活的工具而在研究工作中广泛应用,不仅如此,具有靶向细胞转录过程中产生的RNA底物的利用前景,从而起到与RNAi技术相类似的效果。CRISPR-Cas技术已经在基因功能研究、动物模型建立、基因治疗等领域得到广泛的推广和应用,有力地推动了相关领域的研究进展。 CRISPR (clustered, regularly interspaced, short, palindromic repeats)/Cas (CRISPR-associated) systems are a unique prokaryotic defense against foreign genetic elements. It also be considered as a targeted genome editing tool in molecular biology research. Because of its simplicity, high success rate and high efficiency in genome targeting, Cas system became the best genome targeting tools compared with ZFNs (Zinc-finger nucleases) and TALENs (Transcrip-tion activator-like effector nucleases). According to the recent researches, Cas system could be used as an efficient system for site-specific transcriptional repression or activation. Additionally, a specific Cas9 protein has been observed to target an RNA substrate, suggesting that Cas9 may have the same ability as RNAi technology to be programmed to target RNA as well. Overall, the targeted genome editing technology via CRISPR/Cas system has been Widely promot-ed and applied in many field such as the research on gene functions, the the disease model of gene knock-out animal construction and the gene therapy. So it will have significant impact on future advancements in genome engineering.
作者 贾良杰
出处 《中国医药导报》 CAS 2014年第22期154-156,164,共4页 China Medical Herald
基金 国家级大学生创新创业训练计划项目(编号201310718020)
关键词 基因靶向修饰技术 Cas9 基因组编辑 基因治疗 CRISPR/Cas Gene targeting CRISPR/Cas Genome editing Gene therapy
  • 相关文献

参考文献22

  • 1Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic si-lencing systems in bacteria and archaea [J]. Nature, 2012,482 (7385) : 331-338.
  • 2Yosef I, Goren MG, Qimron U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli [J]. Nucleic acids research ,2012,40(12) :5569-5576.
  • 3Makarova KS, Grishin NV, Shabalina SA, et al. A putative RNA- interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action [J]. Biology direct, 2006,1 ( 1 ) :7.
  • 4Deheheva E, Chylinski K, Sharma CM, et al. CRISPR RNA matu- ration by trans-encoded small RNA and host factor RNase III [J]. Nature, 2011,471 (7340) : 602-607.
  • 5Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA- guided DNA endonuclease in adaptive bacterial immunity [J]. Sci- ence,2012,337(6096) : 816-821.
  • 6Hou Z, Zhang Y, Propson NE, et al. Efficient genome engineering in human pluripotent stem ceils using Cas9 from Neisseria meningi- tides [J]. Proceedings of the National Academy of Sciences,2013,110 (39) : 15644-15649.
  • 7Nekrasov V, Staskawiez B, Weigel D, et al. Targeted mutagenesis in the model plant Nieotiana benthamiana using Cas9 RNA-guided en- donuclease [J]. Nature Bioteehnology, 2013,31 (8) : 691-693.
  • 8Mali P, Yang L, Esveh KM, et al. RNA-guided human genome en- gineering via Cas9 [J]. Science, 2013,339 (6121 ) : 823-826.
  • 9Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013,339 (6121 ) : 819-823.
  • 10Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expres- sion [J]. Cell ,2013,152(5) : 1173-1183.

二级参考文献25

  • 1Spitz F, Furlong EE. Transcription factors: from enhancerbinding to developmental control. Nat Rev Genet 2012; 13:613-626.
  • 2Blancafort P, Segal D J, Barbas CF 3rd. Designing transcription factor architectures for drug discovery. Mol Pharmacol 2004; 66:1361-1371.
  • 3Sera T. Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev 2009; 61:513-526.
  • 4Beerli RR, Segal D J, Dreier B, Barbas CF 3rd. Toward control- ling gene expression at will: specific regulation of the erbB- 2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci USA 1998; 95:14628-14633.
  • 5Beerli RR, Dreier B, Barbas CF 3rd. Positive and negative regulation of endogenous genes by designed transcription fac- tors. Proc NatI Acad Sci USA 2000; 97:1495-1500.
  • 6Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 2011; 29:149-153.
  • 7Moscou M J, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science 2009; 326:1501.
  • 8Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type IIl effectors. Science 2009; 326:1509-1512.
  • 9Maeder ML, Linder S J, Reyon D, et al. Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods 2013; 10:243-245.
  • 10Perez-Pinera P, Ousterout DG, Brunger JM, et al. Synergistic and tunable human gene activation by combinations of syn- thetic transcription factors. Nat Methods 2013; 10:239-242.

共引文献66

同被引文献25

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部