期刊文献+

航空发动机油液磨粒与故障关系RVM预测方法 被引量:1

Research and Application on A Predictable Method of the Relationships between Aero Engine Oil Wear Particle and Fault
下载PDF
导出
摘要 支持向量机方法应用于发动机油液磨粒与故障关系预测时,常出现稀疏性不强、计算量大、核函数必须满足Mercer条件等问题。针对这一问题,在原理介绍和推导的基础上,利用某型航空发动机滑油光谱分析得到的237组数据中的7种金属磨粒浓度及其对应的发动机工作状态,对相关向量机预测方法进行了检验。采用相关向量机、最小二乘支持向量机和反向传播神经网络方法,对发动机工作状态进行预测。结果表明,在同等条件下,与LSSVM和BP-NN相比,RVM拥有计算量较少、预测时间较短,精度较高等优势,可广泛应用于发动机油液磨粒分析与故障预测。 In order to overcome some inherent defects of Support Vector Machine (SVM),such as poor sparsity,heavy computation and kernel function satisfactory to the Mercer's conditions in the engine oil wear particle detection and the fault diagnosis,a new attempt by adopting a predictable method based on Relevance Vector Machine (RVM)is proposed.On the basis of the introduction of principle and deduction, the spectrum analysis data of a certain aero engine lubricating oil are utilized to predict the relationships between the aero engine oil wear particle concentration and fault.Through analysis and verification,the results show that the method based on RVM has more advantages in generalization over the SVMs and the ANNs under the same conditions,and the method can be widely used in the engine oil wear particle analysis and the failure prediction.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2014年第4期17-20,共4页 Journal of Air Force Engineering University(Natural Science Edition)
关键词 相关向量机 航空发动机 油液磨粒 故障预测 RVM aero engine oil wear particle failure predict
  • 相关文献

参考文献11

  • 1Yu song P,Veeke H P M,Lodcwijks G. A simulation based expert system for process diagnosis[C]// Pro- ceedings of the eurosis 4th international industrial simulation conference.Ghent: Eurosis ETI, 2006 : 393- 398.
  • 2黄瑛,陶云刚,周洁敏,苏登军.D-S证据理论在多传感器数据融合中的应用[J].南京航空航天大学学报,1999,31(2):172-177. 被引量:17
  • 3屈梁生,张海军.机械诊断中的几个基本问题[J].中国机械工程,2000,11(1):211-216. 被引量:75
  • 4Vapnik V N. The nature of statistical learning theory [M]. New York: Springer-Verlag,1999.
  • 5王晓丹,高晓峰,姚旭,雷蕾.SVM集成研究与应用[J].空军工程大学学报(自然科学版),2012,13(2):84-89. 被引量:7
  • 6Xu X M,Mao Y F,Xiong J N,et al.Classification per- formance comparison between RVM and SVM[C]// Proceedings of the 1EEE international workshop on anti- counterfeiting, security, identification. Fujian: IEEE press, 2007 : 208-211.
  • 7Tipping M E. Sparse Bayesian learning and the rele- vance vector machine[J].Machine learning research, 2001 (1) : 211-244.
  • 8Widodo A.Fault diagnosis of low speed bearing based on relevance vector machine and support vector ma- chine[J].Expert systems with applications, 2009,36 (3) : 7252-7261.
  • 9Tipping M E. Sparse Bayesian learning and the rele- vance vectormaching[J].Journal of machine learning research, 2001,1 (3) : 211-244.
  • 10周欣,秦晓东,吴瑛.稀疏贝叶斯模型和相关向量机在信号识别中的应用[J].电路与系统学报,2011,16(6):75-80. 被引量:1

二级参考文献30

共引文献105

同被引文献8

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部