期刊文献+

协同过滤推荐技术综述 被引量:194

Survey of Recommendation Based on Collaborative Filtering
下载PDF
导出
摘要 协同过滤是推荐系统中广泛使用的推荐技术,研究人员对如何完善协同过滤推荐技术开展大量工作,但是相应的研究总结较少.文中对协同过滤的相关研究进行全面回顾,首先阐述协同过滤的内涵及其存在的主要问题,包括稀疏性、多内容及可扩展性,然后详细介绍国内外学者针对以上问题的解决方案,最后指出协同过滤下一步的研究重点.文中介绍一个相对完整的协同过滤知识框架,对理清协同过滤的研究脉络,为后续研究提供参考,推进个性化信息服务的发展具有一定意义. Collaborative filtering is a widely used technique in recommender systems. Extensive studies are carried out on collaborative filtering. However, systematic summary of this field is scarce. In this paper, research of collaborative filtering is reviewed. The meaning and key issues of collaborative filtering, including sparsity, multiple-content and scalability, are described firstly, and then the solutions to the above key issues are introduced in detail. Finally, the future work of collaborative filtering is pointed out. The knowledge framework of collaborative filtering is introduced. It makes the research clues of collaborative filtering clear, provides a reference to other scholars, and improves the performance of personalized information services.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第8期720-734,共15页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.713311002 71271072) 高等学校博士学科点专项科研基金项目(No.20110111110006) 上海高校选拔培养优秀青年教师科研专项基金项目(No.sdl10021)资助
关键词 个性化服务 推荐系统 协同过滤 信息超载 Personalized Service Recommender System Collaborative Filtering Information Overload
  • 相关文献

参考文献106

  • 1陈如明.大数据时代的挑战、价值与应对策略[J].移动通信,2012(17):14-15. 被引量:168
  • 2Borchers A, Herlocker J, Konstan J, et al. Ganging up on Informa- tion Overload. Computer, 1998, 31(4) : 106-108.
  • 3李聪.电子商务推荐系统中协同过滤瓶颈问题研究.博士学位论文.合肥:合肥工业大学,2009.
  • 4Resnick P, Varian H R. Recommender Systems. Communications of the ACM, 1997,40(3) : 56-58.
  • 5Zenebe A, Noreio A F. Representation, Similarity Measures and Aggregation Methods Using Fuzzy Sets for Content-Based Recom- mender Systems. Fuzzy Sets and Systems, 2009, 160( 1 ) : 76-94.
  • 6Schafer J B, Konstan J A, Riedl J. E-commerce Recommendation Applications. Data Mining and Knowledge Discovery, 2001, 5 (1/ 2) : 115-153.
  • 7Adomavicius G, Tuzhilin A. Toward the Next Generation of Recom- mender Systems: A Survey of the State-of-the-Art and Possible Ex- tensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6) : 734-749.
  • 8夏培勇.个性化推荐技术中的协同过滤算法研究.博士学位论文.青岛:中国海洋大学,2011.
  • 9苏新宁,周军等.数据挖掘理论与技术.北京:科学技术文献出版社.2008:138-142.
  • 10Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York, USA: ACM Press, 1997.

二级参考文献324

共引文献1774

同被引文献1087

引证文献194

二级引证文献999

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部