期刊文献+

基于偏最小二乘法的纸张抗张强度预测模型 被引量:8

Building predicting model of paper tensile strength based on partial least-squares approach
下载PDF
导出
摘要 为了解决抗张强度机理模型中参数难以测量、偏离工厂生产变量、实际指导关联性差的问题。以一瓦楞原纸生产线为研究对象,先通过经验分析筛选影响纸张抗张强度的生产过程变量,在收集对应变量的生产数据后,应用偏最小二乘法建立抗张强度预测模型并对重要影响变量进行分析。结果表明该模型具有较好精度,其皮尔逊相关系数r=0.732,均方根误差RMSE值为276 N·m-1,平均相对误差MRE值为5.17%。同时得到了影响纸张抗张强度的6个重要生产过程变量,通过机理分析和现场验证,发现结果具有较好的现实吻合度。 The problems existing in the mechanism models include difficulty in obtaining the parameters, and most of the parameters had little relationship with production which reduced its practicability. The partial least-squares method (PLS) was used to establish the model to predict paper strength based on a production line of a corrugated paper mill. By selecting parameters and their data aided with mechanism analysis, we built the model and obtained the key parameters. The results showed that the model had a good precision that its Pearson's value was 0.732, root mean square error (RMSE) was 276 N ~ m-1, and mean relative error (MRE) was 5.17%. Besides, the model had a good analytical ability that the key elements could be interpreted very well from the mechanism angle. Key words: chemical processes; paper sheet tensile strength; product engineering; partial least-squares; prediction
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第9期3544-3551,共8页 CIESC Journal
基金 2010广东省科技计划项目重大科技专项(2010A080801002) 华南理工大学制浆造纸工程国家重点实验室开放基金项目(201233) 2014中央高校基本科研业务费专项资金资助项目(2014ZZ0055)~~
关键词 化学过程 纸张抗张强度 产品工程 偏最小二乘法 预测 chemical processes paper sheet tensile strength product engineering partial least-squares prediction
  • 相关文献

参考文献20

  • 1Chen Kefu(陈克复).Pulp and Paper Machinery and Equipment(制浆造纸机械与设备(下)) [M].Beijing:China Light Industry Press,2003.
  • 2Page D H.A theory for the tensile strength of paper[J].Tappi Journal,1969,52(4):674-679.
  • 3Garg P,Scott W.Potential application of predictive tensile strengthmodels in paper manufacture(Ⅰ):Development of a predictivetensile strength model from the page equation//TAPPI PapermakersConference Proceedings[C].2001.
  • 4Anson S J I,Karademir A,Sampson W W.Specific contact area andthe tensile strength of paper [J].Appita Journal, 2006,59(4):297-301.
  • 5Westerlind Bo S,Arnesson P,Sandstorm P,et al. Engineeringapproach to page and shear-lag theory for predicting tensile strengthof paper//61st Appita Annual Conference and Exhibition [C].GoldCoast,2007.
  • 6Axelsson A.Fibre based models for predicting tensile strength ofpaper [D].Finland:Lule? University of Technology, 2009:32-65.
  • 7Navita S,Kumar Ra.Articficial neural network modeling for tensilestrength of paper in paper manufacturing process international [J].Information Technology and Knowledge Management,2011, 4(2):409-412.
  • 8Wang Huiwen(王惠文).Partial Least-Squares Regression Methodand Application(光纤传感技术与应用) [M].Beijing: NationalDefense Industry Press,2000:123-202.
  • 9胡益,王丽,马贺贺,侍洪波.基于核PLS方法的非线性过程在线监控[J].化工学报,2011,62(9):2555-2561. 被引量:20
  • 10贾润达,毛志忠,王福利.基于KPLS模型的间歇过程产品质量控制[J].化工学报,2013,64(4):1332-1339. 被引量:29

二级参考文献71

  • 1曾雪强,王明文,陈素芬.一种基于潜在语义结构的文本分类模型[J].华南理工大学学报(自然科学版),2004,32(z1):99-102. 被引量:27
  • 2李勤.生物系统的发光原理及其应用[J].生命科学仪器,2004,2(4):33-37. 被引量:5
  • 3吴晓朝,吴捷,李全国.一种基于满意度的PID参数整定方法[J].华南理工大学学报(自然科学版),2005,33(2):39-42. 被引量:15
  • 4刘付永红,刘桂雄.生物光子机理、检测及实验[J].光通信技术,2005,29(6):62-63. 被引量:2
  • 5陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 6KIM K, LEE J M, LEE I B. A novel multivariate regres- sion approach based on kernel partial least squares with orthogonal signal correction [ J]. Chemometrics and Intel- ligent Laboratory Systems, 2005, 79(1-2) : 22-30.
  • 7JIA R D, MAO Z Z, CHANG Y Q, et al. Kernel partial robust M-regression as a flexible robust nonlinear model- ing technique[ J]. Chemometrics and Intelligent Labora- tory Systems, 2010, 100(2) : 91-98.
  • 8JIA M X, CHU F, WANG F L, et al. On-line batch process monitoring using batch dynamic kernel principal component analysis [ J]. Chemometrics and Intelligent Laboratory Systems, 2010, 101(2) : 110-122.
  • 9WOLD S, SJOSTROM M, ERIKSSON L. PLS-regression a basic tool of chemometrics [ J]. Chemometrics and In- telligent Laboratory System, 2001, 58 (2) : 109-130.
  • 10JIANG W, KHAN J, DOUGAL R A. Dynamic centrifu- gal compressor model for system simulation[ J ]. Journal of Power Sources, 2006, 158 : 1333-1343.

共引文献72

同被引文献94

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部