期刊文献+

应用Bernoulli型简单方程求(2+1)维KP方程的精确行波解 被引量:4

Application of Simplest Equations to Bernoulli Kind for Obtaining Exact Traveling-Wave Solutions for the (2 + 1)-Dimensional KP Equation
下载PDF
导出
摘要 利用行波变换把(2+1)维KP方程化成常微分方程,再运用简单方程法求解(2+1)维KP方程的行波解.文中选取Bernoulli方程为简单方程.将由KP方程所化成的常微分方程分成两部分:一部分包含导数项,另一部分为方程其他部分.然后,平衡最高次幂的非线性项所产生的最高次数和最高阶导数项所产生的最高项的次数,得到平衡方程,确定解的形式.最后解得(2+1)维KP方程的行波解. Traveling-wave coordinate is used for transforming KP equation to a nonlinear ordinary differential equation .The traveling-wave solutions of KP equation are obtained by the method of the simplest equation when the simplest equation is the Bernoulli equation .The nonlinear ordinary equation is divided into two parts:part A con-tains the derivatives, and part B contains the rest of the equation .Then,balancing the highest powers of the polyno-mials for the parts A and B and a balance equation is obtained which depends on the kind of the simplest equation , the form of solution is determined .Finally, the new traveling-wave solutions of the KP equation are obtained .
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2014年第4期82-86,共5页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(11071159) 内蒙古高等学校研究重点项目(NJ2214053)
关键词 简单方程法 (2+1)维KP方程 精确行波解 method of simplest equation (2+1)-dimensional KP equation exact traveling-wave solutions
  • 相关文献

参考文献3

二级参考文献10

共引文献9

同被引文献33

  • 1张琳琳,刘希强.(2+1)维Bogoyavlenskii’s广义破裂孤子方程的对称及精确解[J].四川大学学报(自然科学版),2009,46(6):1757-1762. 被引量:1
  • 2陈玉娟,高洪俊,朱月萍.复Swift-Hohenberg方程在一些Banach空间内的指数吸引子[J].应用数学学报,2007,30(4):699-706. 被引量:3
  • 3C. S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura. Method for solving the Korteweg - de Vries equation. Physical Review Letters, 1967, 19 : 1095 - 1097.
  • 4R. Hirota, J. Satsuma. A variety of nonlinear network equations generated from the Backlund transformation for the Tota lattice. Progress of Theoretical Physics, 1976, 59 : 64 - 100.
  • 5Geng Xianguo, Wu Lihua. Darboux Transformation and Explicit Solutions for Drinfellt - Sokolov - Wilson equation. Communica- tions in Theoretical Physics, 2010, 6 : 1090 - 1096.
  • 6M. Craddock. Fundamental solutions, transition densities and the integration of Lie symmetries [ J ]. Journal of Differential Equa- tions, 2009, 246(6) :2538 - 2560.
  • 7Gu Zhuquan. The Neumann system for the 3rd - order eigenvalue problems related to the Boussinesq equation[ J]. IL NUOVO CI- MENTO, 2002, 117(6) :615 -632.
  • 8Peter, J. Olver. Application of Lie Groups to Differential Equa- tions. New York: Springer- Verlag, 1986.
  • 9Dong Zhouzhou, Chen Yong, Kong Dexing, Wang Zenggui. symmetry reduction and exact solutions of a Hyperbolic Monge -Ampere Equation. Chinese Annals of Mathematics, Series B, 2012, 33B(2) :309 -316.
  • 10套格图桑,斯仁道尔吉.(2+1)维破裂孤子方程新的精确孤立波解[J].内蒙古大学学报(自然科学版),2008,39(2):125-130. 被引量:7

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部