期刊文献+

3/6-SPS并联机构刚度和弹性变形的解析法分析

Analytical Method of Stiffness and Elastic Deformation for a 3 /6-SPS Parallel Manipulator
下载PDF
导出
摘要 针对并联机构中机构的刚度和弹性变形随外载荷变化的问题,以3/6-SPS并联机构为例,采用解析法求解分析其总刚度矩阵和弹性变形。首先,分析该并联机构受力位置并确定驱动力及其姿态;然后,分析该机构的驱动约束分支的弹性变形,导出驱动约束分支的伴随矩阵;最后求解出该并联机构的总刚度矩阵和弹性变形。得到结论:当建立3/6-SPS并联机构的总刚度矩阵和求解弹性变形时,必须理清刚度和位姿、广义六维力之间的关系。 As the stiffness and elastic deformation in PM change with external loads, an analytical method is used to solve the general stiffness matrix and elastic deformation in this paper, and a 3 / 6-SPS is analyzed to illustrate the method. First the force situations of the parallel manipulators are analyzed and the poses are determined. Then, the elastic deformations of the active legs in the parallel manipulators are analyzed and compliance matrices of active legs are derived. Finally, the total stiff-ness matrix and elastic deformation of the parallel manipulators are derived. The results show that the relationship between stiffness, poses and generalized six-dimensional force must be made clear when establishing the total stiffness matrix and sol-ving elastic deformation of 3 / 6-SPS PM, constrained force/ torque must be considered.
作者 叶勇 康亮
出处 《机械研究与应用》 2014年第4期28-31,共4页 Mechanical Research & Application
关键词 并联机构 约束 伴随矩阵 刚度矩阵 弹性变形 parallel manipulator constrain compliance matrix stiffness matrix elastic deformation
  • 相关文献

参考文献8

  • 1Zhang D, Lang Y T S. Stiffness Modeling for a Class of Reconfigu- table PKMs with Three to five Degrees of Freedom [ J ]. Journal of Manufacturing Systems, 2004, 23 (4): 316-327.
  • 2Liu X J, Wang J S, Pritschow G. On the Optima[ Kinematics De- sign of the PRRRP 2-Dof Parallel Mechanism [ J ] Mechanism and Machine Theory, 2006, 41(9) : 1111-1130.
  • 3Lu Y, Hu B, Liu P L. Kinematics and Dynamic Analyses of a Par- allel Manipulator with Three Active Legs and on Passive Leg by a Virtual Serial Mechanism[J]. Multibody System Dynamics, 2007, 17(4) : 229-241.
  • 4许佳音.基于CAD变量几何法并联机床加工短杂曲面的关键技术研究[D].秦皇岛:燕山大学,2010.
  • 5谭青.两种少自由度并联机构的刚度与弹性力学分析与模拟[D].秦皇岛:燕山大学,2011:8592.
  • 6S P Timoshenko, J Gere. Mechanics of Materials [M]. New York : Van Nostrand Reinhold Company, 1972.
  • 7Li Y M, Xu Q. Stiffness Analysis for a 3-PUU Parallel Kinematic machine [J]. Mech. Mach. Theory, 2008(38) : 186-200.
  • 8石宁,黄勇,李晓豁.4自由度串联式机械手轨迹运动学的分析[J].辽宁工程技术大学学报(自然科学版),2011,30(4):562-565. 被引量:8

二级参考文献10

  • 1罗家佳,胡国清.基于MATLAB的机器人运动仿真研究[J].厦门大学学报(自然科学版),2005,44(5):640-644. 被引量:108
  • 2梁喜凤,王永维,苗香雯,崔绍荣.番茄收获机械手工作空间分析与仿真[J].浙江大学学报(农业与生命科学版),2005,31(6):807-811. 被引量:18
  • 3陈平,刘国海.MOTOMAN-UPJ型机械手运动学改进算法研究[J].机械传动,2006,30(4):23-27. 被引量:4
  • 4Tsai L W, Morgan A. Solving the kinematics of the most general six and five-degree-of-freedom manipulators bycontinuation methods[J].Mechanism and Machine Theory, 1985, 20 (2) :189-200.
  • 5CLIFFORD W K. Application of Grassman s extensive algebra[J] .Amer J of Math, 1878(1) :350-358.
  • 6Li H, Hestenes D, Rockwood A. Generalized homogeneous coordinates for computational geometry .Geometric Computing with Clifford Algebras. Berlin, Heidelberg: Springer-Verlag, 2001 (1):27-60.
  • 7Lee H Y, Liang C G. Displacement analysis of the general spatial 7-1ink 7R mechanism.Mechanism and Machine Theory, 1988,23 (3) :219-226.
  • 8Dinesh Manocha, John F Canny. Efficient inverse kinematics for general 6R manipulators .IEEE Transactions on Robotics and Automation, 1994,10 (5) :648-657.
  • 9蔡白兴.机器人学[M].北京:清华大学出版社,2000.
  • 10倪振松,廖启征,魏世民,乔曙光,李瑞华.空间一般6R机械手位置反解的新方法[J].北京邮电大学学报,2009,32(2):29-33. 被引量:8

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部