期刊文献+

结合光电化学和瞬态吸收光谱技术研究光电化学分解水载流子动力学 被引量:1

Dynamics of Photocarriers during Photoelectrochemical Water Splitting by Combination of Photoelectrochemistry and Transient Absorption Spectroscopy
下载PDF
导出
摘要 半导体光电化学制氢是一种重要的、有前景的太阳能应用技术.其产氢效率主要取决于光生载流子的产生、分离和传输效率.深入理解光生载流子的动力学过程对于设计高效的太阳能产氢器件有重要的指导意义.光电化学和瞬态吸收光谱技术是研究光催化反应微观动力学和机理的强有力手段.本文介绍作者应用这些技术在半导体光电化学制氢方面所取得的部分最新研究结果,并对存在的问题和今后研究重点提出了一些看法. Semiconductor photoelectrochemical hydrogen production is an important and promising technology for utilizing solar energy. The efficiency of hydrogen production depends on the efficiencies of separation and transport of photo-generated carriers. A deep understanding of the behavior of these processes has guiding significance for designing efficient solar hydrogen device. Photoelectrochemical and transient absorption spectroscopy methods are powerful for studying the microscopic dynamics and mechanism ofphotocatalytic reaction. This review describes the latest results regarding the semiconductor photoelectrochemical hydrogen production obtained by these methods. The problems are indicated and future research priorities in this field are proposed.
作者 冷文华
出处 《电化学》 CAS CSCD 北大核心 2014年第4期316-322,共7页 Journal of Electrochemistry
基金 国家基础研究计划(No.2011CB936003) 国家自然科学基金项目(No.50971116)资助
关键词 光电化学制氢 光生载流子 动力学 瞬态光电压 瞬态吸收光谱 photoelectrochemical hydrogen production photogenerated carriers dynamics transient photovoltage transient absorption spectroscopy
  • 相关文献

参考文献15

  • 1Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
  • 2Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974.
  • 3Shangguan P, Tong S, Li H, et al. Enhanced photoelectrochemical oxidation of water over undoped and Ti-doped α-Fe2O3 electrodes by electrochemical reduction pretreatment[J]. RSC Advances, 2013, 3(26): 10163-10167.
  • 4Cowan A J, Durrant J R. Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels[J]. Chemical Society Reviews, 2013, 42(6): 2281-2293.
  • 5Leng W H, Zhang Z, Zhang J Q, et al. Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy[J]. Journal of Physical Chemistry B, 2005, 109(31): 15008-15023.
  • 6Leng W H, Barnes P R F, Juozapavicius M, et al. Electron diffusion length in mesoporous nanocrystalline TiO2 photoelectrodes during water oxidation[J]. Journal of Physical Chemistry Letters, 2010, 1(6): 967-972.
  • 7Kennedy J H, Frese K W. Photooxidation of water at α-Fe2O3 electrodes[J]. Journal of the Electrochemical Society, 1978, 125, 709-714.
  • 8Soedergren S, Hagfeldt A, Olsson J, et al. Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells[J]. Journal of Physical Chemistry, 1994, 98(21): 5552-5556.
  • 9Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems[J]. Chemical Reviews, 1995, 95(1): 49-68.
  • 10冷文华,朱红乔.结合(光)电化学方法研究光催化降解污染物反应[J].电化学,2013,19(5):437-443. 被引量:3

二级参考文献16

  • 1] Fujishima A, Honda K. Electrochemical photolysis of wa- ter at a semiconductor electrode [J]. Nature, 1972, 238 (5358): 37-38.
  • 2Chen C C, Ma W H, Zhao J C. Semiconductor-mediated photodegradation of pollutants under visible-light irradia- tion[J]. Chemical Society Reviews, 2010, 39(11): 4206- 4219.
  • 3Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95(1): 69-96.
  • 4Leng W H, Zhang Z, Zhang J Q, et al. Investigation of the kinetics of a YiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy[J]. Journal of Physical Chemistry B, 2005, 109(31): 15008-15023.
  • 5Cowan A J, Tang J W, Leng W H, et al. Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination [J]. Journal of Physical Chemistry C, 2010, 114(9): 4208 -4214.
  • 6Leng W H, Barnes P R F, Juozapavicius M, et al. Electrondiffusion length in mesoporous nanocrystalline TiO2 pho- toelectrodes during water oxidation[J]. Journal of Physical Chemistry Letters, 2010, 1(6): 967-972.
  • 7Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems [J]. Chemical Reviews, 1995, 95 (1): 49-68.
  • 8Cheng X F, Leng W H, Liu D P, et al. Electrochemical preparation and characterization of surface-fluorinated TiO2 nanoporous film and its enhanced photoelectrochem- ical and photocatalytic properties [J]. Journal of Physical Chemistry C, 2008, 112(23): 8725-8734.
  • 9Barnes P R F, Anderson A Y, Durrant J R, et al. Simula- tion and measurement of complete dye sensitised solar cells: Including the influence of trapping, electrolyte, oxi- dised dyes and light intensity on steady state and transient device behaviour[J]. Physical Chemistry Chemical Physics, 2011, 13(13): 5798-5816.
  • 10Fei H, Leng W H, Li X, et al. Photocatalytic oxidation of arsenite over TiOz: Is superoxide the main oxidant in nor- mal air-saturated aqueous solutions? [J]. Environmental Science & Technology, 2011, 45(10): 4532-4539.

共引文献2

同被引文献24

  • 1Liu Z S, Wu B T, Zhao Y L, et al. Solvothennal synthesis and photocatalytic activity of Al-doped BiOBr micro- spheres[J]. Ceramics International, 2014, 40(4): 5597-5603.
  • 2Bo C, Zhou H, Zhang F, et al. Visible light photocatalytic performance of hierarchical BiOBr microspheres synthe- sized via a reactable ionic liquid[J]. Materials Science in Semiconductor Processing, 2014, 42:58-61.
  • 3Gao M C, Zhang D F, Pu X P, et al. BiOBr photocatalysts with tunable exposing proportion of {001} facets: Com- bustion synthesis, characterization, and high visible-light photocatalytic properties[J]. Materials Letters, 2015, 140 31-34.
  • 4Zhang J, Shi F J, Lin J, et al. Self-assembled 3-D architec- tures of BiOBr as a visible light-driven photocatalyst [J]. Chemistry of Materials, 2008, 20(9): 2937-2941.
  • 5Shang M, Wang W Z, Zhang L. Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template[J]. Journal of Hazardous Materials, 2009, 167( 1-3): 803-809.
  • 6Wang P, Zhai Y M, Wang D J, et al. Synthesis of reduced graphene oxide-anatase Ti02 nanocomposite and its im proved photo-induced charge transfer properties[J]. Nano- scale, 2011, 3(4): 1640-1645.
  • 7Williams G, Kamat P V. Graphene-semiconductor nano- composites: Excited-state interactions between ZnO nanoparticles and grapheme oxide[J]. Langmuir, 2009, 25 (24): 13869-13873.
  • 8Williams G, Seger B, Kamat V. TiO2-graphene nano- composites. UV-assisted photocatalytic reduction of grapheme oxide[J]. Nanoscale, 2008, 2(7): 1487-1491.
  • 9Huang X, Qi X Y, Boey F, et al, Graphene-based compos- ites[J]. Chemical Society Reviews, 2012, 41(2): 666-686.
  • 10Aroutiounian V M, Arakelyan V M, Shahnazaryan G E. Metal oxide photoelectrodes for hydrogen generation us- ing solar radiation-driven water splitting[J]. Solar Energy, 2005, 78(6): 581-592.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部