期刊文献+

绿脓杆菌阳极的微生物燃料电池含溶解氧性能研究 被引量:2

Effecting of Dissolved Oxygen on Microbial Fuel Cells Based on Pseudomonas Aeruginosa
下载PDF
导出
摘要 本文研究了绿脓杆菌分泌的电子中介体绿脓菌素与电极之间的反应,并探讨了溶解氧的影响.通过循环伏安曲线、测试电极开路电位等方法,确定绿脓菌素阳极反应是受扩散控制的可逆反应.菌液的溶解氧浓度在一定范围内(0~1.6 mg·L-1)对绿脓菌素和电极之间的反应影响不大.微生物燃料电池的极化曲线表明,当溶解氧为1.6mg·L-1时,微生物燃料电池输出电流下降了7%,对绿脓杆菌阳极的微生物燃料电池影响不大. In this work, the reaction between the electron shuttle secreted by Pseudomonas aeruginosa and anode was studied by measuring cyclic voltammogram and open circuitpotential. The effect of dissolved oxygenon the oxidation reaction of anode was explored. It was demonstrated that the reaction was a diffusion-controlled and reversible process. The anode was a little affected when the dissolved oxygen ofinocula was low (0 - 1.6 mg. L-1). The polarization curves showed that the current output of microbial fuel cells decreased 7% with the impact of dissolved oxygen.
出处 《电化学》 CAS CSCD 北大核心 2014年第4期382-385,共4页 Journal of Electrochemistry
基金 国家自然科学基金委员会与英国皇家学会合作交流项目(No.21311130120)资助
关键词 微生物燃料电池 绿脓杆菌 阳极 氧气 绿脓菌素 microbial fuel cells Pseudomonas aeruginosa anode oxygen pyocyanine
  • 相关文献

参考文献14

  • 1陈立香,肖勇,赵峰.微生物燃料电池生物阴极[J].化学进展,2012,24(1):157-162. 被引量:18
  • 2次素琴,吴娜,温珍海,李景虹.微生物燃料电池电极材料研究进展[J].电化学,2012,18(3):243-251. 被引量:9
  • 3Wang Z, Zheng Y, Xiao Y, et al. Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbial fuel cells[J]. Bioresource Technology, 2013, 144: 74-9.
  • 4Ringeisen B R, Ray R, Little B. A miniature microbial fuel cell operating with an aerobic anode chamber[J]. Journal of Power Sources, 2007, 165(2): 591-597.
  • 5Min B, Cheng S, Logan B E. Electricity generation using membrane and salt bridge microbial fuel cells[J]. Water Research, 2005, 9(39): 1675-1686.
  • 6Ajayi F F, Kim K Y, Chae K J, et al. Effect of hydrodymamic force and prolonged oxygen exposure on the performance of anodic biofilm in microbial electrolysis cells[J]. International Journal of Hydrogen Energy, 2010, 35(8): 3206-3213.
  • 7Fan Y, Han S K, Liu H. Improved performance of CEA microbial fuel cells with increased reactor size[J]. Energy & Environmental Science, 2012, 5: 8273-8280.
  • 8Quan X, Quan Y, Tao K, et al. Comparative investigation on microbial community and electricity generation in aerobic and anaerobic enriched MFCs[J]. Bioresource Technology, 2012, 128: 259-265.
  • 9Essar D W, Eberly L, Hadero A, et al. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: Interchangeability of the two anthranilate synthases and evolutionary implications[J]. Journal of Bacteriology, 1990, 172(2): 884-900.
  • 10Chang P C, Blackwood A C. Simultaneous production of three phenazine pigments by Pseudomonas aeruginosa Mac 436[J]. Canadian Journal of Microbiology, 1969, 15(5): 439-444.

二级参考文献7

共引文献25

同被引文献40

  • 1连静,冯雅丽,李浩然,刘志丹,周良.直接微生物燃料电池的构建及初步研究[J].过程工程学报,2006,6(3):408-412. 被引量:23
  • 2Mayahi A, Ilbeygi H, Ismail A F, et at. SPEEK/cSMM mem- brane for simultaneous electricity generation and wastewater treat- ment in microbial fuel cell[ J]. Journal of Chemical Technology and Biotechnology, 2015,90(4) :641-647.
  • 3Habermann W, Pommer E. Biological fuel cells with sulphide storage capacity [ J ]. Applied microbiology and bioteehnology, 1991, 35(1) : 128 -133.
  • 4Timmers R A, Strik D P, Hamelers H V, et al. Electricity gen- eration by a novel design tubular plant microbial fuel cell [ J ]. Biomass and Bioenergy, 2013, 51:60 -67.
  • 5Hyeonjin J, Yunghun Y, Kumaran R, et al. Production of algal biomass ( Chlorella vulgaris) using sediment microbial filel cells [ J]. Bioresource Technology, 2012, 109 : 308 - 311.
  • 6Kanr A, Kim J R, Michie I, et at. Microbial fuel cell type bio- sensor for specific volatile fatty acids using acclimated hacterial communities[ J]. Biosensors and Bioelectronies, 2013, 47:50 -55.
  • 7Donovan C, Dewan A, Heo D, et at. Sediment microbial fuel eell powering a submersible ultrasonic receiver: New approach to remote monitoring[ J]. Journal of Power Sources, 2013,233 : 79 -85.
  • 8Chen Z, Huang Y - C, Liang J - H, et al. A novel sediment mi- crobial fuel cell with a biocathode in the rice rhizosphere [ J ]. Bioresouree technology, 2012, 108 : 55 - 59.
  • 9Chen C- Y, Yeh K- L, Aisyah R, et at. Cultivation, photobio- reactor design and harvesting of microalgae for biodiesel produc- tion: a critical review[ J]. Bioresouree technology, 2011, 102 (1): 71 -81.
  • 10Tremouli A, Antonopoulou G, Bebelis S, et al. Operation and characterization of a microbial fuel cell fed with pretreated cheese whey at different organic loads [ J ]. Bioresource technology, 2013, 131 : 380 -389.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部