期刊文献+

基于动态罚函数的PSO-CO算法

A PSO-CO Algorithm Based on Dynamic Penalty Factor
下载PDF
导出
摘要 本文分析了协同优化算法中所存在的问题,采用动态罚函数的解决思路,对系统级中的一致性等式约束问题进行改造,使其成为一无约束问题.另外,提出不同学科分配不同的惩罚权重的方法,大大提高了计算精度.同时,以粒子群算法替代了原有的求解算法,消除了初始解对优化结果的影响,也改善了算法的整体求解速度.在Matlab软件中实现该算法的运行,同时通过两个典型算例对该算法进行验证,表明其具有较好的优化性能. This paper analyzes the problem existing in the collaborative optimization algorithm,and modifies the consistency equality constraint problem in system level using dynamic penalty function as a solution,making it into an unconstrained problem. In addition,the proposed method that assigns different penalty weights for different disciplines will improves accuracy greatly. Meanwhile,using particle swarm optimization algorithm to replace the original algorithm,not only eliminates the impact of the initial solution for the optimization results,but also improves the overall speed of the algorithm for solving. The running of this algorithm is realized in the Matlab software. At the same time,using two typical examples to validate the algorithm shows that it has better optimization performance.
出处 《吉林师范大学学报(自然科学版)》 2014年第3期17-21,共5页 Journal of Jilin Normal University:Natural Science Edition
基金 国家自然科学基金项目(51039006)
关键词 协同优化 粒子群算法 动态罚因子 MATLAB collaborative optimization (CO) particle swarm optimization (PSO) dynamic penalty factor Matlab
  • 相关文献

参考文献5

二级参考文献37

  • 1谷良贤,龚春林.多学科设计优化方法比较[J].弹箭与制导学报,2005,25(1):60-62. 被引量:23
  • 2王晓青,王小军.多学科优化技术及其算法[J].导弹与航天运载技术,2007(1):23-26. 被引量:11
  • 3郦仕云,宁汝新,徐劲祥,姜晓春.气动和结构多学科优化设计过程集成技术研究[J].系统仿真学报,2007,19(4):852-855. 被引量:9
  • 4刘克龙,姚卫星,余雄庆.几种新型多学科设计优化算法及比较[J].计算机集成制造系统,2007,13(2):209-216. 被引量:12
  • 5Braun R D, Kroo I. Use of the Collaborative Optimization Architecture for Launch Vehicle Design [R]//NASA-96-4018, 1996. USA: NABA, 1996.
  • 6Stanley A O, Prabhat H. Genetic Algorithm Based Collaborative Optimization of a TiRrotor Configuration [C]// 6th AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2005. USA: AIAA, 2005: 5982-5993.
  • 7Parviz M Z, Vassili V T, Alastair S W. Use of Global Approximation in the Collaborative Optimization [C]// 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004. USA: AIAA, 2004: 3934-3944.
  • 8Herskovits J, Mappa P, Goulart E, et al. Mathematical Programming Models and Algorithms for Engineering Design Optimization [J]. Computer Methods in Applied Mechanics and Engineering (S0045-7825), 2005, 194(30-33): 3244-3268.
  • 9Sobieski L P, Kroo L. Collaborative Optimization Using Response Surface Estimation [R]//AIAA-98-0915, 1998. USA: AIAA, 1998.
  • 10Alexandrov N M, Lewis R M. Analytical and Computational Properties of Distributed Approaches to MDO [R]//AIAA-2000-4718, 2000. USA: AIAA, 2000.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部