期刊文献+

基于HMM在电机故障诊断上的研究 被引量:4

Research on motor fault diagnosis based on HMM
下载PDF
导出
摘要 提出一种基于隐马尔可夫模型的方法用于故障的诊断与检测,该方法采用HMM与模式识别相结合的方法,通过对电机的电压电流信号进行特征提取和分析,构建电压电流空间模型,并且每个模型可以作为一级,每一级可以提高其判断的准确度,而HMM模型用做一个故障分类器来使用,相比于自适应模糊推理方法(MLFF)和多层前馈网络法(ANFIS),其准度有了很大提高,并且减少了计算。通过对不同故障诊断实例阐述了基于HMM的故障诊断方法的有效性和可行性。 A method of hidden Markov based on Markov models was proposed in this paper for diagnosis and fault detection. Thereinto,the method combining HMM technique and pattern recognition feature can be utilized to extract and analyze the voltage and current signals of the motor,thereby constructing the voltage and the current space model. Moreover,each model can be regarded as a level which could improve the judging accuracy,while HMM model was used as a fault classifier,and in comparison with the adaptive fuzzy reasoning method( MLFF)and multilayer feed-forward network( ANFIS),its accuracy was improved greatly with less calculation number.Finally,the effectiveness of the method of fault diagnosis based on HMM and the feasibility were verified through the different fault diagnosis examples.
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2014年第4期103-108,共6页 Journal of Railway Science and Engineering
基金 国家自然科学基金资助项目(61273158)
关键词 故障诊断 隐马尔可夫模型 感应电机 模式识别 fault diagnosis HMM model induction motor pattern recognition
  • 相关文献

参考文献13

  • 1Faiz J, Ebrahimi B M. Mixed - fault diagnosis in induc-tion motors considering varying load and broken bars loca-tion [J]. Energy Conversion and Management, 2010,51(7):1432-1441.
  • 2Soualhi A, Clerc G, Razik H. Faults classification of in-duction machine using an improved ant clustering tech-nique [ C ]// IEEE International Symposium on Diagnos-tics for Electric Machines, Power Electronics Drives,2011:316 -321.
  • 3Soualhi A,Clerc G, Razik H, et al. Detection of inductionmotor faults by an improved artificial ant clustering [ C]//the Annual Conference on IEEE Industrial Electronics So-ciety ,2011 : 3446 -3451.
  • 4Sheng Wen Shih,Liao H Y M. Learning atomic humanactions using variable - length markov models [ J]. Sys-tems ,Man,and Cybernetics,IEEE 2009,39 ( 1) : 268-280.
  • 5Hoey J. Value - Directed human behavior analysis fromvideo using partially observable markov decision processes[J]. Pattern Analysis and Machine Intelligence,IEEE,Univ of Dundee,2010:1118 - 1132.
  • 6王洪霞,李学平.含表面裂纹悬臂梁的非线性振动分析[J].铁道科学与工程学报,2010,7(1):69-73. 被引量:3
  • 7Soualhi A, Clerc G,Razik H. Fault detection and diag-nosis of induction motors based on hidden Markov model[J]. IEEE,2012,9: 1693 - 1699.
  • 8黄景德,郝学良,黄义.基于改进HMM的潜在电子故障状态识别模型[J].仪器仪表学报,2011,32(11):2481-2486. 被引量:12
  • 9Ray A. Symbolic dynamic analysis of complex system foranomaly detection [ J]. Signal Processing, 2004,84 (7):1115-1130.
  • 10Fisher R A. The use of multiple measurements in taxo-nomic problems[ J]. Annals Eugen, 1936. 7 : 179 - 188.

二级参考文献25

  • 1江凡,薛冬新,宋希庚.裂纹悬臂梁的扭转弹簧模型及其实验验证[J].振动.测试与诊断,2004,24(2):143-145. 被引量:8
  • 2陈梦成,汤任基.裂纹梁动态响应有限元分析中的线弹簧模型[J].工程力学,1996,13(4):105-113. 被引量:6
  • 3张伟伟,王志华,马宏伟.基于小波分析的悬臂梁裂纹参数识别方法研究[J].机械强度,2007,29(2):201-205. 被引量:11
  • 4Chonros T G, Dimarogonas A D. Vibration of a creaked cantilever beam [ J ]. Journal of Vibration and Acoustics, 1998,120:742 - 745.
  • 5El K, Benamar R, Bennouna M M. Geometrically non - linear free vibrations of clamped - clamped beams with an edge crack [ J ]. Comput Struct,2006,54:485 - 502.
  • 6EI K M, Benamar R,White G. Improvement of the semi - analytical method, based on Hamilton' s principle and spectral analysis, for determination of the geometrically non - linear free response of thin straight structures, part Ⅰ: Application to C -C and SS -C beam [ J]. Sound Vib, 2002,249:263 - 305.
  • 7Amabili M, Garziera R. A technique for the systematic choice of admissible functions in the Rayleigh - Ritz method [ J ]. Sound Vib, 1999,224 : 519 - 39.
  • 8MING D, HE D. A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics frame work and methodology [ J ]. Mechanical System and Signal Pro- cessing, 2007, 21: 2248-2266.
  • 9ROMBERG J K, CHOI H, BARANIUK R G. Bayesian tree- structured image modeling using Wavelet-domain hidden Markov models [ J ]. IEEE Transactions on Image Processing, 2001, 10(7): 1056-106.
  • 10VIRK S M, MUHAMMAD A, MARTINEZ-ENRIQUZE A M. Fault prediction using artificial neural network and fuzzy logic [ J ]. The 7th Mexican International Confer- ence on Artificial Intelligence, 2008( 1 ) : 149-154.

共引文献13

同被引文献55

  • 1阳光武,肖守讷,金鼎昌.机车车体牵引座及减振器座的疲劳寿命仿真分析[J].内燃机车,2004(9):16-18. 被引量:9
  • 2李国宁,曹杰,刘伯鸿.故障树分析在计算机联锁系统中的应用[J].兰州交通大学学报,2006,25(6):16-19. 被引量:3
  • 3FROSINI L, BASSI E. Stator current and motor efficiency as indicators for different types of bearing faults in induction motors [ J]. IEEE Trans Ind Electron, 2010, 57 ( 1 ) : 244-251.
  • 4IMMOVILLI F, COCCONCELLI M, BELLINI A, et al. Detection of generalized-roughness bearing fault by spectral- kurtosis energy of vibration or current signals [ J ]. IEEE Trans Ind Electron, 2009, 56(11) : 4710-4717.
  • 5ZHANG B, SCONYERS C, BYINGTON C, et al. A probabilistic fault detection approach : application to bearing fault detection [ J ]. IEEE Trans Ind Electron, 2011, 58(5): 2011-2018.
  • 6IMMOVILLI F, BIANCHINI C, COCCONCELLI M, et al. Bearing fault model for induction motor with externally induced vibration [J] .IEEE Trans Ind Electron, 2013, 60 (8) : 3408-3418.
  • 7YAZIDI A, HENAO H, CAPOLINO G A, et al. A webbased remote laboratory for monitoring and diagnosis of ac electrical machines [ J ]. IEEE Trans Ind Electron, 2011, 58( 10): 4950-4959.
  • 8BARUAH P, CHINNAM R B. HMMs for diagnostics and prognostics in machining processes [ J ]. Int J Prod Res, 2005, 43(6) : 1275-1293.
  • 9RAMMOHAN R, TAHA M. Exploratory investigations for intelligent damage prognosis using hidden Markov models [ C]// Proc 2nd IEEE Conf Systems Man and Cybernetics. Piscataway: IEEE Press, 2005 : 1524-1529.
  • 10CHEN C, ZHANG B, VACHTSEVANOS G. Machine condition prediction based on adaptive neuro fuzzy and high-order particle filtering [ J ]. IEEE Trans Ind Electron, 2011, 58(9): 4353-4364.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部