期刊文献+

采用双重特征扰动的最小平方有序回归 被引量:2

Least Squares Ordinal Regression Using Doubly Corrupted Features
下载PDF
导出
摘要 有序回归是一种特殊的机器学习范式,其目标是利用类间内在的有序标号来划分模式。尽管已有众多有序学习方法相继被提出,但其性能常受制于有限的训练样本。借鉴最近提出的边际特征扰动思想,通过对训练样本的输入和输出分别施加已知分布噪声的随机扰动和确定偏差的可控扰动,以弥补样本有限的不足,进而在最小平方有序回归基础上发展出采用双重特征扰动的最小平方有序回归(least squares ordinal regression using doubly corrupted features,LSOR-DCF)。实验结果表明,LSOR-DCF性能优于无扰动或单一输入/输出的扰动,且在小数据集上表现得尤其明显。 Ordinal regression is a special machine learning paradigm whose purpose is to classify patterns by using between-class natural ordinal scale. Many ordinal regression algorithms have been proposed. However, their perfor-mance will largely be constrained when facing the dataset with the limited size. To remedy the shortcoming of finite dataset, inspired by recently-proposed marginalized corrupted features, this paper develops the least squares ordinal regression using doubly corrupted features (LSOR-DCF) which is based on least squares ordinal regression by cor-rupting both the samples using random noise from known distributions and the labels using deterministic biases. The experimental results demonstrate the superiority of LSOR-DCF in performance, especially in the small data sets, to related methods without adding either noise in samples or corrupted noise in samples and labels alone.
出处 《计算机科学与探索》 CSCD 2014年第9期1085-1091,共7页 Journal of Frontiers of Computer Science and Technology
基金 高等学校博士学科点专项科研基金 江苏省自然科学基金~~
关键词 有序回归 最小平方回归 边际特征扰动 双重扰动 ordinal regression least squares regression marginalized corrupted features double corruption
  • 相关文献

参考文献18

  • 1Herbrich R, Graepel T, Obermayer K. Large margin rank boundaries for ordinal regression[M]//Advances in Large Margin Classifiers. Cambridge, MA, USA: MIT Press, 2000: 115-132.
  • 2Chu W, Keerthi S S. New approaches to support vector ordinal regression[C]//Proceedings of the 22nd International Con- ference on Machine Learning (ICML '05). New York, NY, USA: ACM, 2005: 145-152.
  • 3Kramer S, Widmer G, Pfahringer B, et al. Prediction of ordinal classes using regression trees[J]. Fundamenta Informaticae, 2001, 47(1): 1-13.
  • 4Frank E, Hall M. 2001. A simple approach to ordinal classi-fication[C]//LNCS 2167: Proceedings of the 12th European Conference on Machine Learning (ECML '01), Freiburg, Germany, Sep 5-7, 2001. Berlin, Heidelberg: Springer-Verlag, 2001: 145-156.
  • 5Waegeman W, Boullart L. An ensemble of weighted support vector machines for ordinal regression[J]. Transactions on Engineering, Computing and Technology, 2006, 12:71-75.
  • 6Cardoso J S, Da Costa J F P. Learning to classify ordinal data: the data replication method[J]. The Journal of Machine Learning Research, 2007, 8(7): 1393-1429.
  • 7Shashua A, Levin A. Ranking with large margin principle: two approaches[C]//Proceedings of the Conference on Neural Information Processing Systems. Cambridge, M_A, USA: MIT Press, 2003: 961-968.
  • 8Sun Bingyu, Li Jiuyong, Wu Desheng D, et al. Kernel discrim- inant learning for ordinal regression[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(6): 906-910.
  • 9Liu Yang, Liu Yan, Chan K C C. Ordinal regression via manifold learning[C]//Proceedings of the 25th AAAI Con- ference on Artificial Intelligence (AAAI ' 11), San Francisco, USA, Augt 7-11, 2011.Menlo Park, CA, USA: AAAI, 2011: 398-403.
  • 10Cover T, Hart E Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.

同被引文献49

  • 1Herbrieh R, Graepel T, Obermayer K. Support vector learning for ordinal regression[C]//ICANN 99. Ninth International Conference on Artificial Neural Networks. Edinburgh: lET, 1999: 97-102.
  • 2Wu H, Lu H, Ma S. A practical SVM-based algorithm for ordinal regression in image retrieval[C]//Proceedings of the Elev- enth ACM International Conference on Multimedia. New York, USA: ACM, 2003: 612-621.
  • 3Zhang D, Wang Y, Zhou L, et al. Multimodal classification of Alzheimer's disease and mild cognitive impairment[J]. Neu- roimage, 2011, 55(3): 856-867.
  • 4Chang K Y, Chen C S, Hung Y P. A ranking approach for human ages estimation based on face images[C]//Pattern Recog- nition (ICPR), 2010 20th International Conference on. Washington D C,USA: IEEE, 2010: 3396-3399.
  • 5Chang K Y, Chen C S, Hung Y P. Ordinal hyperplanes ranker with cost sensitivities for age estimation[C]//Computer Vi-sion and Pattern Recognition (CVPR), 2011 IEEE Conference on. Washington D C,USA: IEEE, 2011: 585-592.
  • 6Kramer S, Widmer G, Pfahringer B, et al. Prediction of ordinal classes using regression trees[J]. Fundam Inform, 2001, 47 (1/2), 1-13.
  • 7Cardoso J S, Da Costa J F P. Learning to classify ordinal data: The data replication method[J]. Journal of Machine Learning Research, 2007, 8(1393/1429): 6.
  • 8Frank E, Hall M. A simple approach to ordinal classification[M]. Berlin, Heidelberg: Springer, 2001 : 145-156.
  • 9Waegeman W, Boullart L. An ensemble of weighted support vector machines for ordinal regression[J]. International Journal of Computer Systems Science and Engineering, 2009, 3 (1) : 47-51.
  • 10Herbrich R, Graepel T, Obermayer K. Large margin rank boundaries for ordinal regression[C] //Advances in Large Margin Classifiers. Cambridge, MA: MIT Press, 2000:115-132.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部